

Degradation of fuel rods materials based on zirconium after operation in WWER-type reactors
https://doi.org/10.22349/1994-6716-2018-95-3-191-205
Abstract
The paper presents microstructural studies of specimens cut from fuel elements made of E110 spongy zirconium-based alloy after operation in WWER-1000 before reaching the burnout of ~35 MW per day/kg U. As a result of exposure to high temperatures and neutron irradiation significant changes in the phase composition of the material of fuel rods claddings appear in particles β-Nb’ size, density, and composition; composition of the Laves phase, formation of dislocation loops of α-type, as well as δ and γ hydrides. The main structural elements determining the degradation of the mechanical properties of the E110 alloy under irradiation are dislocation loops and fine-phase precipitates due to their relatively large density. The data obtained can be used to construct dose dependences of microstructural changes with the aim of predicting the residual life of claddings and fuel assemblies as a whole.
Keywords
About the Authors
B. A. GurovichRussian Federation
Dr. Sci. (Eng)
1 Kurchatova Sq, 123182 Moscow
A. S. Frolov
Russian Federation
Cand. Sci. (Eng)
1 Kurchatova Sq, 123182 Moscow
E. A. Kuleshova
Russian Federation
Dr. Sci. (Eng)
1 Kurchatova Sq, 123182 Moscow; 31 Kashirskoe shosse, 115409 Moscow
D. A. Maltsev
Russian Federation
Cand. Sci. (Eng)
1 Kurchatova Sq, 123182 Moscow
D. V. Safonov
Russian Federation
1 Kurchatova Sq, 123182 Moscow
V. N. Kochkin
Russian Federation
Cand. Sci. (Eng)
1 Kurchatova Sq, 123182 Moscow
E. V. Alexeeva
Russian Federation
Cand. Sci. (Eng)
1 Kurchatova Sq, 123182 Moscow
N. V. Stepanov
Russian Federation
1 Kurchatova Sq, 123182 Moscow
References
1. Yang, W.J.S., Tucker, R.P., Cheng, B., Adamson, R.B., Precipitates in zircaloy: Identification and the effects of irradiation and thermal treatment, J. Nucl. Mater., 1986, V. 138, No 2–3, pp. 185–195.
2. Griffiths, M., Gilbert, R.W., Carpenter, G.J.C. Phase instability, decomposition and redistribution of intermetallic precipitates inZircaloy-2 and 4 during neutron irradiation, J. Nucl. Mater., 1987, V. 150, No 1, pp. 53–66.
3. Griffiths, M., A review of microstructure evolution in zirconium alloys during irradiation, J. Nucl. Mater., 1988, V. 159, pp. 190–218.
4. Yang, W.J.S., Precipitate stabilityin neutron-irradiated Zircaloy-4, J. Nucl. Mater., 1988, V. 158, pp. 71–80.
5. Svetukhin, V.V., Lvov, P.E., Novoselov, A.E., Kobyliansky, G.P., Shishov, V.N., Modelirovanie protsessa rosta niobiyevykh pretsipitatov v splave Zr–1%Nb pri obluchenii [Simulation of the growth process of niobium precipitates in Zr-1% Nb alloy upon irradiation], Fiziko-matematicheskie nauki. Fizika, 2007, No 4, pp. 105–111.
6. Kobyliansky, G.P., Novoselov, A.E., Obukhov, A.V., Ostrovsky, Z.E., Shishov, V.N., Nikulina, A.V., Markelov, V.A., Radiation damage of alloy E635 in structural elements of FA of WWER-1000, VANT. Series: Physics of Radiation Damageand Radiation Material Science, 2009, V. 2, pp. 57–68.
7. Novikov, V.V., Markelov, V.A., Tselishchev, A.V., Konkov, V.F., Sinelnikov, L.P., Panchenko, V.L., Structure-phase changes and corrosion behavior of e110 and e635 claddings of fuels in water cooled reactors, J. Nucl. Sci. Technol., 2006, V. 43, No 9, pp. 991–997.
8. Markelov, V.A., On correlation of composition,structural-phase state, and properties of E635 zirconium alloy, Inorg. Mater.: Appl. Res., 2010, V. 1, No 3, pp. 245–253.
9. Dong, Q. Yu H., Yao, Z., Long, F., Balogh, L., Daymond, M.R., Study of microstructure and precipitates of a Zr-2.5Nb-0.5Cu CANDU spacer material, J. Nucl. Mater., 2016, V. 481, pp. 153–163.
10. Doriot, S., Onimus, F., Gilbon, D., Mardon, J.P., Bourlier, F., Transmission electron microscopy study of second phase particles irradiated by 2 MeV protons at 350°C in Zr alloys, J. Nucl. Mater., 2017, V. 494, pp. 398–410.
11. Shindo, D., Oikawa, T., Analiticheskaya prosvechivayushchaya elektronnaya mikroskopiya [Analytic transmission electron microscopy], Moscow: Tekhnosphera, 2006.
12. Malis, T., Cheng, S.C., Egerton, R. F., EELS log-ratio technique for specimen-thickness measurement in the TEM, J. Electron Microsc. Tech. 1988, V. 8, No 2, pp. 193–200.
13. Yang, Y.Y., Egerton, R.F., Tests of two alternative methods for measuring specimen thickness in a transmission electron microscope, Micron., 1995, V. 26, No 1, pp. 1–5.
14. Zhang, H.-R., Egerton, R.F., Malac, M., Local thickness measurement through scattering contrast and electron energy-loss spectroscopy, Micron., 2012, V. 43, No 1, pp. 8–15.
15. Egerton, R.F., Cheng, S.C., Measurement of local thickness by electron energy-loss spectroscopy, Ultramicroscopy, 1987, V. 21, No 3, pp. 231–244.
16. Yakoubovsky, K., Mitsuishi, K., Nakayama, Y., Furuya, K., Thickness measurements with electron energy loss spectroscopy, Microsc. Res. Tech., 2008, V. 71, No 8, pp. 626–631.
17. Saltykov, S.A., Stereometricheskaya metallografiya [Stereometric metallography], Moscow: Metallurgiya, 1976.
18. Bell, D.C., Garratt-Reed, A.J., Energy Dispersive X-ray Analysis in the Electron Microscope, Oxford: Taylor & Francis, 2003.
19. Williams, D.B., Carter, C.B., Transmission Electron Microscopy: A Textbook for Materials Science, New York: Springer, 2009, V. 1.
20. Transmission Electron Energy Loss Spectrometry in Materials Science and the EELS Atlas, Ahn, C.C., (Ed.), Wiley Verlag, 2006.
21. Kurata, H., Isoda, S., Kobayashi, T., Chemical Mapping by Energy-Filtering Transmission Electron Microscopy, J. Electron Microsc. (Tokyo), 1996, V. 45, No 4, pp. 317–320.
22. Frolov, A.S., Krikun, E.V., Prikhodko, K.E., Kuleshova, E.A., Development of the DIFFRACALC program for analyzing the phase composition of alloys, Crystallogr. Reports, 2017, V. 62, No 5.
23. Kuleshova, E.A., Frolov, A.S., Maltsev, D.A., Safonov, D.V, Krikun, E.V, Fedotova, S.V., Structure and Phase Composition of Zirconium Fuel Claddings in Initial State and after Creep Tests, KnE Mater. Sci. 15th Int. Sch. “New Mater. - Mater. Innov. energy.”, 2017.
24. Yang, H.L., Matsukawa, Y., Kano, S., Duan, Z.G., Murakami, K., Abe, H., Investigation on microstructural evolution and hardening mechanism in dilute Zr–Nb binary alloys, J. Nucl. Mater., 2016, V. 481, pp. 117–124.
25. Doriot, S., Verhaeghe, B., Béchade, J.-L., Menut, D., Gilbon, D., Mardon, J.-P., Cloué, J.-M., Miquet, A., Legras, L., Microstructural Evolution of M5 TM7 Alloy Irradiated in PWRs up to High Fluences–Comparison With Other Zr-Based Alloys, Zircon. in the Nucl. Ind. 17 th Int. Symp., ASTM International, New York, 2015, pp. 759–799.
26. Kiran Kumar, N.A.P., Szpunar, J.A., EBSD studies on microstructure and crystallographic orientation of delta-hydrides in Zircaloy-4, Zr-1% Nb and Zr-2.5% Nb, Mater. Sci. Eng. A., 2011, V. 528, No 21, pp. 6366–6374.
27. Rajasekhara, S., Kotula, P.G., Enos, D.G., Doyle, B.L., Clark, B.G., Influence of Zircaloy cladding composition on hydride formation during aqueous hydrogen charging, J. Nucl. Mater., 2017, V. 489, pp. 222–228.
28. Simpson, L.A., Cann, C.D., Fracture toughness of zirconium hydride and its influence on the crack resistance of zirconium alloys, J. Nucl. Mater., 1979, V. 87, No 2–3, pp. 303–316.
29. Weatherly, G.C., The precipitation of gamma-hydride plates in zirconium, Acta Metall., 1981, V. 29, No 3, pp. 501–512.
30. Suman, S., Khan, M.K., Pathak, M., Singh, R.N., Chakravartty, J.K., Hydrogen in Zircaloy: Mechanism and its impacts, Int. J. Hydrogen Energy, 2015, V. 40, No 17, pp. 5976–5994.
31. Bradbrook, J.S., Lorimer, G.W., Ridley, N., The precipitation of zirconium hydride in zirconium and zircaloy-2, J. Nucl. Mater., 1972, V. 42, No 2, pp. 142–160.
32. Northwood, D.O., Gilbert, R.W., Bahen, L.E., Kelly, P.M., Blake, R.G., Jostsons, A., Madden, P.K., Faulkner, D., Bell, W., Adamson, R.B., Characterization of neutron irradiation damage in zirconium alloys– an international “round-robin” experiment, J. Nucl. Mater. 1979, V. 79, No 2, pp. 379–394.
33. Carpenter, G.J.C., Watters, J.F., A study ofelectron irradiation damage in Zirconium using a high voltage electron microscope, J. Nucl. Mater., 1981, V. 96, No 3, pp. 213–226.
34. Company, P., C-component dislocations in neutron irradiated Zircaloy-2, J. Nucl. Mater., 1983, V. 116, pp. 127–130.
35. Onimus, F., Béchade, J.L., Radiation Effects in Zirconium Alloys, Compr. Nucl. Mater., 2012, pp. 1–31.
36. Idrees, Y., Yao, Z., Kirk, M.A., Daymond, M.R., In situ study of defect accumulation in zirconium under heavy ion irradiation, J. Nucl. Mater., 2013, V. 433, No 1–3, pp. 95–107.
37. Yan, C., Wang, R., Wang, Y., Wang, X., Bai, G., Effects of ion irradiation on microstructure and properties of zirconium alloys-A review, Nucl. Eng. Technol., 2015, V. 47, No 3, pp. 323–331.
38. Barashev, A. V., Golubov, S.I., Stoller, R.E., Theoretical investigation of microstructure evolution and deformation of zirconium under neutron irradiation, J. Nucl. Mater., 2015, V. 461, pp. 85– 94.
Review
For citations:
Gurovich B.A., Frolov A.S., Kuleshova E.A., Maltsev D.A., Safonov D.V., Kochkin V.N., Alexeeva E.V., Stepanov N.V. Degradation of fuel rods materials based on zirconium after operation in WWER-type reactors. Voprosy Materialovedeniya. 2018;(3(95)):191-205. (In Russ.) https://doi.org/10.22349/1994-6716-2018-95-3-191-205