Preview

Voprosy Materialovedeniya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

On the radiation embrittlement of materials of support structures for WWER RPV. Part 1. Experimental studies

https://doi.org/10.22349/1994-6716-2018-94-2-175-192

Abstract

The features of the radiation embrittlement of materials of support structures for WWER RPV are considered. These features are connected with low irradiation temperature no exceeding90°Cand also with a use of the steels which are usually applied for building of the metal structures and have not a high resistance to the radiation embrittlement. It has been shown that support structure (SS) of WWER-440 of V-179, V-230 types may cause the operation life limit. The experimental data on the standard mechanical properties and fracture toughness are presented for different steels and weld metals in the initial and irradiation conditions. SEM investigation of fracture surface of broken specimens and atomic tomography have been performed.

About the Authors

B. Z. Margolin
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

Dr Sci (Eng)

49, Shpalernaya St, 191015, St Petersburg




E. V. Yurchenko
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

Cand. Sci (Eng)

49, Shpalernaya St, 191015, St Petersburg




V. I. Kostylev
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

Cand. Sci (Eng)

49, Shpalernaya St, 191015, St Petersburg




A. M. Morozov
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

Cand. Sci (Eng)

49, Shpalernaya St, 191015, St Petersburg




A. Ya. Varovin
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

Cand. Sci (Eng)

49, Shpalernaya St, 191015, St Petersburg




S. V. Rogozhkin
NRC “Kurchatov Institute” – Institute for Theoretical and Experimental Physics
Russian Federation

Dr Sci (Phys-Math)

49, Shpalernaya St, 191015, St Petersburg



A. A. Nikitin
NRC “Kurchatov Institute” – Institute for Theoretical and Experimental Physics
Russian Federation
49, Shpalernaya St, 191015, St Petersburg


References

1. Alekseenko N.N., Amaev A.D., Gorynin I.V., Nikolaev , V.A., Radiation damage of nuclear power plant pressure vessel steels, Illinois, USA: La Grange Park, 1997.

2. Steel, L.E., Hawthorne, J.R., Neutrone-induced changes in notch ductility of reactor pressure vessel steels, Proc. Hot Laboratories Equipment Conf., 9th Trans. ANS 4, 1961, June, No 1, pp. 92–93.

3. Pravdyuk, N.F., Amaev, A.D., Platonov, P.A., et al., Vliyanie neitronnogo oblucheniya na svoistva konstruktsionnykh materialov (Influence of neutron irradiation on the properties of structural materials), Effect of nuclear radiation on materials, Moscow, 1962.

4. Hawthorne, J.R., Radiation embrittlement, Embrittlement of engineering alloys, Briant C., Banerji, S. (Eds.), New York: Academic Press, 1983.

5. Nanstad, R.K., Farrell, K., Braski, D.N., Corwin, W.R., Accelerated neutron embrittlement of ferritic steels at low fluence: Flux and spectrum effects, J. of Nucl. Mat., 1988, August–September, V. 158, pp. 1–6. DOI: 10.1016/0022-3115(88)90146-8

6. Burdakov, N.S., Vasnin, A.M., Oslin, S.G., Rivkin , E.Yu., Rodin, M.E., Ushakov, V.P., Tsvetkov, L.A., Kozlov, A.V., Evseev, M.V., Issledovanie vliyaniya oblucheniya na prochnostnye kharakteristiki materialov metallokonstruktsij reaktorov [Investigation of the irradiation influence on strength properties of reactor metal structure materials], Atomic Energy, 1990, V. 69(3), pp. 135–139.

7. Ballesteros, A., Ahlstrand, R., Bruynooghe, C., Chernobaeva, A., Kevorkyan, Y., Erak, D., Zurko, D., Irradiation Temperature, Flux and Spectral Effect, Progress in Nuclear Energy, 2011, V. 53, Issue 6, pp. 756–759. DOI: 10.1016/j.pnucene.2011.05.022

8. Ortner, S., English, C., Contribution of Laboratory Experiments To Unravelling The Mechanisms Of RPV Embrittlement, PAMELA Workshop, Mol, Belgium September 19–21, 2011.

9. Jones, R.B., Williams, T.J., Jones, R.B., Williams, T.J., The Dependence of Radiation Hardening and Embrittlement on Irradiation Temperature, Proc. 17th International Symposium: Effects of Radiation on Materials, Gelles, D.S. Nanstad, R.K., Kumar, A.S., Little, E.A, (Eds.), American Society of Testing and Materials, 1996, V. 1270, pp. 569–590.

10. Margolin, B.Z., Yurchenko, E.V., Morozov, A.M., Piogova, N.E., Analysis of relationship between the radiation embrittlement mechanisms and the influence of neutron flux in respect of WWER reactor pressure vessel materials, Strength of Materials, 2013, No 45(4), pp. 406–423.

11. Standard Test Method for Determination of Reference Temperature, T0, for Ferritic Steels in the Transition Range, ASTM E 1921-10: Annual Book of ASTM Standards, 2010, V. 03.01.

12. RD EO 1.1.2.09.0789-2012: Metodika opredeleniya vyazkosti razrusheniya po rezultatam ispytanij obraztsov svidetelei dlya rascheta prochnosti i resursa korpusov reaktorov VVER-1000 [Procedure for determination of fracture toughness on the basis of test results of surveillance specimens for strength and lifetime calculation of WWER-1000 RPV], Moscow, JSC “Concern Rosenergoatom”, 2012.

13. Margolin, B.Z., Kursevich, I.P., Sorokin, A.A., et al., Embrittlement and fracture toughness of highly irradiated austenitic steels for vessel internals of WWER type reactors. Part 2. Relation between irradiation swelling and irradiation embrittlement. physical and mechanical behavior, Strength of Materials, 2010, No 42(2), pp. 144–153.

14. Kursevich, I.P., Margolin B.Z., Prokoshev, O.Yu ., Kokhonov, V.I., Mekhanicheskie svoistva austenitnykh stalei pri neitronnom obluchenii: vliyanie razlichnykh faktorov [Mechanical properties of austenitic steels at neutron irradiation. Influence of various factors], Voprosy Materialovedeniya, 2006, No 4(48), pp. 55–68.

15. Margolin, B.Z., Gulenko, A.G., Fomenko, V.N., Kostylev, V.I., Further improvement of the Prometey model and unified curve method. Part 2. Improvement of the unified curve method, Engineering Fracture Mechanics, (2018), V. 191, pp. 383–402.

16. MT 1.1.4.02.1204-2017: Raschet na soprotivlenie khrupkomu razrusheniyu korpusov reaktorov VVER-440 V-179, V-230 s uchetom ikh otzhiga pri prodlenii sroka ekspluatatsii do 60 let. Metodika [Guide for calculation of brittle fracture resistance for WWER-440 RPV (V-179, 230) subjected to annealing for lifetime prolongation up to 60 years], Moscow, JSC “Concern Rosenergoatom”, 2017.

17. Margolin, B.Z., Gulenko, A.G., Nikolaev , V.A., Riadkov, L.N., A new engineering method for prediction of the fracture toughness temperature dependence for RPV steels. Int. J. Pres. Ves. & Piping, 2003, V. 80, pp. 817–829.

18. Margolin B., Gurovich B., Fomenko V., et al., Fracture toughness prediction for highly irradiated RPV materials: From test results to RPV integrity assessment, J. Nucl. Mater., 2013, V. 432, pp. 313–322.

19. Margolin, B.Z., Fomenko, V.N., Gulenko, A.G., Kostylev, V.I., Shvetsova, V.A., On the issue of comparison of the Unified Curve and Master Curve methods and application for RPV structural integrity assessment, Strength of Materials, 2016, No 48 (2), pp. 227–250.

20. Margolin, B.Z., Fomenko, V.N., Gulenko, A.G., Kostylev, V.I., Shvetsova V.A., Further improvement of the Prometey model and Unified Curve method. Part 1. Improvement of the Prometey model, Eng. Fract. Mech., 2017, V. 182, pp. 467–486.

21. Wallin, K., The scatter in KIC results. Eng. Fract. Mech., 1984, V. 19, pp. 1085–1093.

22. Wallin, K., The size effect in KIC results. Eng. Fract. Mech., 1985, V. 22, pp. 149–163.

23. Wallin, K., Fracture toughness transition curve shape for ferritic structural steels. Fracture of engineering materials & structures, Teoh, S., Lee, K., (Eds.), Elsevier Applied Science, 1991, pp. 83–88.

24. Merkle, J.G., Wallin, K., McCabe, D.E., Technical basis for an ASTM standard on determining the reference temperature, T0 for ferritic steels in the transition range. NUREG/CR-5504, ORNL/TM-13631, 1999.

25. Margolin, B.Z., Gulenko, A.G., Shvetsova, V.A., Improved probabilistic model for fracture toughness prediction for nuclear pressure vessel steels, Int. J. Pres. Ves. Piping, 1998, V. 75, pp. 843–855.

26. Babich, V.K., Gul, Yu.P., Dolzhenkov, I.E., Deformatsionnoe starenie stali [Deformation aging of steel], Moscow: Metallurguiya, 1972.

27. Physical Metallurgy, Cahn, R.W., Haasen, P., (Eds), North Holland Physics Publishing, 1996, V. 3.

28. Rogozhkin, S.V., Aleev, A.A., Lukyanchuk, A.A., Shutov, A.S., Raznitsyn, O.A., Kirillov, S.E., Prototip atomnogo zonda s lazernym ispareniem [Prototype of an atomic probe with laser evaporation], Pribory i tekhnika eksperimenta, 2017, No 3, pp. 129–134.

29. Rogozhkin, S.V., Nikitin, A.A., Aleev A.A., Zaluzhny A.G., Chernobaeva A.A., Erak D.Yu., Strombakh, Ya.I., Zabusov, O.O., Issledovanie tonkoi struktury materiala svarnogo shva s vysokim soderzhaniem fosfora korpusa reaktora VVER-440 posle oblucheniya, otzhiga i povtornogo oblucheniya [Investigation of the fine structure of the weld metal with a high phosphorus content of the WWER-440 RPV after irradiation, annealing and re-irradiation], Nuclear Physics and Engineering, 2013, No 4(1), pp. 73–82.

30. Pareige, P., Radiguet, B., Suvorov, A., Kozodaev, M., Krasikov, E., Zabusov, O., Massoud, J .P., Three-dimensional atom probe study of irradiated, annealed and reirradiated VVER 440 weld metals, Surface Interface Analysis, 2004, V. 36, pp. 581–584.

31. Miller, M.K., Chernobaeva, A.A., Shtrombakh, Ya.I., Russel, K.F., Nanstad, R.K., Erak, D.Yu., Zabusov, O.O., Evolution of the nanostructure of VVER-1000 RPV materials under neutron irradiation and post irradiation annealing. Journal of Nuclear Materials, 2009, V. 385, pp. 615–622.

32. Philippe, T., Duguay, S., Blavette, D., Clustering and pair correlation function in atom probe tomography, Ultramicroscopy, 2010, V. 110, pp. 862–865.

33. Baddeley, A., Spatial point processes and their applications, Stochastic Geometry: Lectures given at the C.I.M.E. Summer School held in Martina Franca, Italy, 2004, Weil, W., (Ed.), Springer, 2007, pp.1–75. DOI: 10.1007/3-540-38174-0

34. Meslin, E., Radiguet, B., Pareige, P., Barbu, A., Kinetic of solute clustering in neutron irradiated ferritic model alloys and a French pressure vessel steel investigated by atom probe tomography, J. Nucl. Mater., 2010, V. 399, pp. 137–145.

35. Rogozhkin, S.V., Nikitin, A.A., Aleev, A.A., Germanov, A.B., Zaluzhny, A.G., Atomnozondovye issledovaniya radiatsionno indutsirovannykh segregatsij v ferritno-martensitnoj stali Eurofer97, obluchennoi v reaktore BOR-60. [Atomic-probe studies of radiation-induced segregations in ferrite-martensitic steel Eurofer97 irradiated in the BOR-60 reactor], Perspektivnye materialy, 2012, V.5, pp. 45–52.


Review

For citations:


Margolin B.Z., Yurchenko E.V., Kostylev V.I., Morozov A.M., Varovin A.Ya., Rogozhkin S.V., Nikitin A.A. On the radiation embrittlement of materials of support structures for WWER RPV. Part 1. Experimental studies. Voprosy Materialovedeniya. 2018;(2(94)):175-192. (In Russ.) https://doi.org/10.22349/1994-6716-2018-94-2-175-192

Views: 410


ISSN 1994-6716 (Print)