Preview

Voprosy Materialovedeniya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

On the radiation embrittlement of materials of support structures for WWER RPV. Part 2. Analysis of the completed studies

https://doi.org/10.22349/1994-6716-2018-94-2-193-208

Abstract

The features of the radiation embrittlement of materials of support structures for WWER RPV are considered. These features are connected with low irradiation temperature no exceeding 90oC and also with a use of the steels which are usually applied for building of the metal structures and have not a high resistance to the radiation embrittlement. The model for prediction of material radiation embrittlement as function of the neutron fluence and impurity of Cu and P is proposed. An irradiation temperature effect on the different mechanisms resulting in the material radiation embrittlement is considered: materials hardening due to nucleation of point defects and formation of dislocation loops, copper precipitation and materials non-hardening due to phosphorus segregation.

About the Authors

B. Z. Margolin
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

Dr Sci (Eng)

49, Shpalernaya St, 191015, St Petersburg



E. V. Yurchenko
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

Cand. Sci (Eng)

49, Shpalernaya St, 191015, St Petersburg



V. I. Kostylev
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

Cand. Sci (Eng)

49, Shpalernaya St, 191015, St Petersburg



A. M. Morozov
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

Cand. Sci (Eng)

49, Shpalernaya St, 191015, St Petersburg




A. Ya. Varovin
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

Cand. Sci (Eng)

49, Shpalernaya St, 191015, St Petersburg



S. V. Rogozhkin
NRC “Kurchatov Institute” – Institute for Theoretical and Experimental Physics
Russian Federation

Dr Sci (Phys-Math)

25, Bolshaya Cheremushkinskaya St, 117218, Moscow




A. A. Nikitin
NRC “Kurchatov Institute” – Institute for Theoretical and Experimental Physics
Russian Federation
25, Bolshaya Cheremushkinskaya St, 117218, Moscow


References

1. Normy rascheta na prochnost oborudovaniya i truboprovodov atomnykh energeticheskikh ustanovok [Standard for strength calculation of equipments and pipelines of nuclear power plants], Moscow: Energoatomizdat; 1989.

2. RD EO 1.1.2.99.0920-2014: Raschet na soprotivlenie khrupkomu razrusheniyu korpusov vodovodianykh energeticheskikh reaktorov na stadii proektirovaniya. Metodika [Calculation of brittle fracture resistance of vessels of water-cooled water-moderated power reactors on the design stage. Standards], Moscow: JSC “Concern Rosenergoatom”, 2014.

3. Korn, G. A., Korn, T. M., Mathematical Handbook for Scientists and Engineers, Dovers Publications, Inc., (2000). ISBN 0486411478.

4. Karzov, G. P., Nikolaev, V. A., Yurchenko, E. V., Dozovye zavisimosti radiatsionnogo okhrupchivaniya rossiiskih materialov dlya korpusov energeticheskikh reaktorov VVER-440 [Trend curves of Russian materials radiation embrittlement for WWER-440 RPV], Voprosy Materialovedeniya, 2009, V. 4(60), pp. 124–135.

5. Margolin, B. Z., Nikolaev, V. A., Yurchenko, E. V., Nikolaev, Yu. A., Erak, D. Yu., Nikolaeva, A. V., A novel approach to description of in-service embrittlement of WWER-1000 reactor pressure vessel materials, Strength of Materials, 2010, No 42(1), pp. 2–16.

6. Margolin, B. Z., Nikolaev, V. A., Yurchenko, E. V., Nikolaev, Yu. A., Erak, D. Yu., Nikolaeva, A. V., Analysis of embrittlement of WWER-1000 RPV materials, Int. J. Pres. Ves. & Piping, 2012, V. 89, pp. 178–186.

7. Margolin, B. Z., Yurchenko, E. V., Morozov, A. M., Porogovye i predelnye znacheniya kontsentratsii primesnykh elementov v materiale korpusov reaktorov tipa VVER [Threshold and limiting values of impurity concentrations in material of WWER RPV], Voprosy Materialovedeniya, 2016, No 2(86), pp. 152–163.

8. Amaev, A. D., Kriukov, A. M., Nekliudov, I. M., et al., Radiatsionnaya povrezhdaemost i rabotosposobnost konstruktsionnykh materialov [Radiation Damage and Serviceability of Structural Materials], Parshin, A.M., Platonov, P.A., (Eds.), St Petersburg: Politekhnika, 1977.

9. Alekseenko, N. N., Amaev, A. D., Gorynin, I. V., Nikolaev, V. A., Radiation damage of nuclear power plant pressure vessel steels, Illinois, USA: La Grange Park, 1997.

10. Steel, L. E., Hawthorne, J. R., Neutrone-induced changes in notch ductility of reactor pressure vessel steels, 9th Trans. Hot Laboratories Equipment Conf., ANS 4, 1961, June, No 1, pp. 92–93.

11. Pravdyuk, N. F., Amaev, A. D., Platonov, P. A., et al., Vliyanie neitronnogo oblucheniya na svoistva konstruktsionnykh materialov [Influence of neutron irradiation on the properties of structural materials], Effect of nuclear radiation on materials, Moscow, 1962.

12. Hawthorne, J. R., Radiation embrittlement, Embrittlement of engineering alloys, Briant C., Banerji, S. (Eds.), New York: Academic Press, 1983.

13. Nanstad, R. K., Farrell, K., Braski, D. N., Corwin, W. R., Accelerated neutron embrittlement of ferritic steels at low fluence: Flux and spectrum effects, J. of Nucl. Mat., 1988, August–September, V. 158, pp. 1–6.

14. Burdakov, N. S., Vasnin, A. M., Oslin, S. G., Rivkin, E. Yu., Rodin, M. E., Ushakov, V. P., Tsvetkov, L. A., Kozlov, A. V., Evseev, M. V., Issledovanie vliyaniya oblucheniya na prochnostnye kharakteristiki materialov metallokonstruktsii reaktorov [Investigation of the irradiation influence on strength properties of reactor metal structure materials], Atomic Energy, 1990, V. 69(3), pp. 135–139.

15. Ballesteros, A., Ahlstrand, R., Bruynooghe, C., Chernobaeva, A., Kevorkyan, Y., Erak, D., Zurko, D., Irradiation Temperature, Flux and Spectral Effect, Progress in Nuclear Energy, 2011, V. 53, Issue 6, pp. 756–759. doi.org/10.1016/j.pnucene.2011.05.022.

16. Ortner, S., English, C., Contribution of Laboratory Experiments To Unravelling The Mechanisms Of RPV Embrittlement, PAMELA Workshop, Mol, Belgium September 19–21, 2011.

17. Jones, R. B., Williams, T. J., The Dependence of Radiation Hardening and Embrittlement on Irradiation Temperature, Proc. 17th International Symposium: Effects of Radiation on Materials, Gelles, D.S. Nanstad, R.K., Kumar, A.S., Little, E.A, (Eds.), American Society of Testing and Materials, 1996, V. 1270, pp. 569–590.

18. Margolin, B. Z., Yurchenko, E. V., Morozov, A. M., Pirogova, N. E., Analysis of relationship between the radiation embrittlement mechanisms and the influence of neutron flux in respect of WWER reactor pressure vessel materials, Strength of Materials, 2013, No 45(4), pp. 406–423.

19. IAEA nuclear energy series No NP-T-3.11: Integrity of reactor pressure vessels in nuclear power plants: assessment of irradiation embrittlement effects in reactor pressure vessel steels, Vienna: International atomic energy agency, 2009.

20. Debarberis, L., Kryukov, A., Gillemot, F., Acosta, B., Sevini, F. Semimechanistic analytical model for radiation embrittlement and re-embrittlement data analysis, Int. J. Pres. Ves. Piping, 2005, No 82, pp.195–200.

21. Todeschini, P., Lefebvre, Y., Churier-Bossennec, H., Rupa, N., Chas, G., Benhamou, C., Revision of the irradiation embrittlement correlation used for the EDF RPV fleet, Proceedings of Fontevraud 7, Paper A084-T01, Avignon, France, 2010.

22. United States Nuclear Regulatory Commission. Effect of residual elements on predicted radiation damage in reactor vessels materials, Regulatory Guide 1.99 (Rev.1), Washington, DC: USNRC, 1977.

23. Sokolov M. A., Chernobaeva A. A., Nanstad R. K., et. al., Irradiation, annealing and reirradiation effects on American and Russian reactor pressure vessel st e els, Proc. 19th International Symposium: Effects of Radiation on Materials, ASTM STP1366, West Conshohocken, PA: American Society of Testing and Materials, 2000.

24. MT 1.1.4.02.1204-2017: Raschet na soprotivlenie khrupkomu razrusheniyu korpusov reaktorov VVER-440 V-179, V-230 s uchetom ikh otzhiga pri prodlenii sroka ekspluatatsii do 60 let. Metodika [Guide for calculation of brittle fracture resistance for WWER-440 RPV (V-179, 230) subjected to annealing for lifetime prolongation up to 60 years], Moscow, JSC “Concern Rosenergoatom”, 2017

25. Kuleshova, E. A., Gurovich, B. A., Shtrombakh, Ya. I., Frolov, A. S., Fedotova, S. V., Maltsev, D. A., Krikun, E. V., Zhurko, D. A., Chernobaeva, A. A., Evoliutsiya struktury i svoistv stali 15Kh2NMFAA KR VVER-1000 pod vozdeistviem nizkotemperaturnogo oblucheniya [Evolution of the microstructure and properties of 15Kh2NMFAA steel of WWER-1000 RPV under low temperature irradiation], Proc. 14th Int. Conf. Materials Science in the Design, Manufacture and Maintenance of Nuclear Power Plant Equipment – Mainstream–2016, Zelenogorsk, St Petersburg, 2016.

26. Pechenkin, V. A., Stepanov, I. A., Konobeev, Yu. V., Modeling of phosphorus accumulation on grain boundaries in iron alloys under irradiation, Proc. 20th International Symposium: Effects of Radiation on Materials, ASTM STP 1405, American Society of Testing and Materials, 2001, pp. 174–187.

27. Dienes, G. J., Damask, A. C. J., Radiation enhanced diffusion in solids, Appl. Phys., 1958, V. 29, pp. 1713–1721.

28. Dienes, G. J., Vineyard, G. H., Radiation effects in solids, New York: Interscience Publishers, 1957.

29. Okamoto, P. R., Rehn L. E. Radiation-induced segregation in binary and ternary alloys, J. Nucl. Mater., 1979, V. 83, Issue 1, pp. 2–23.

30. McElroy, R. J., English, C. A., Foreman, A. J., Gage, G., Hyde, J. M., Ray, P. H. N., Vatter, I. A., Temper embrittlement, irradiation induced phosphorus segregation and implications for post-irradiation annealing of reactor pressure vessels, Proc. 18th International Symposium: Effects of Radiation on Materials, ASTM STP1325, American Society of Testing and Materials, 1999, pp. 296–316.

31. Kimura, A., Shibata, M., Kasada, R., Fujii, K., Fukuya, K., Nakata, H., Assessment of Neutron Irradiation-Induced Grain Boundary Embrittlement by Phosphorous Segregation in a Reactor Pressure Vessel Steel, J. ASTM Int., 2005, V. 2, Issue 3, pp. 1–13 (DOI: 10.1520/JAI12398).

32. Nishiyama, Y., Onizawa, K., Suzuki, M., Anderegg, J. W., Nagai, Y., Toyama, T., Hasegawa, M., Kameda, J., Effects of neutron-irradiation-induced intergranular phosphorus segregation and hardening on embrittlement in reactor pressure vessel steels, Acta Mater., 2008, V. 56, pp. 4510–4521.

33. Nishiyama, Y., Yamaguchi, M., Onizawa, K., Iwase, A., Matsuzawa, H., Irradiation-induced grain-boundary solute segregation and its effect on ductile-to-brittle transition temperature in reactor pressure vessel steels, J. ASTM Int. (DOI: 10.1520/JAI101959), 2009, V. 6, Issue 7.

34. Margolin, B. Z., Yurchenko, E. V., Morozov, A. M., Chistyakov, D. A., Novy metod prognozirovaniya teplovogo stareniya stalei korpusov reaktorov tipa VVER [The new method of prediction of thermal ageing of reactor pressure vessel steels], Voprosy Materialovedeniya, 2016, No 2(86), pp. 152–163.

35. Rybin, V. V., Nikolaev, V. A., O mekhanizmakh opredelyayushchikh zavisimost radiatsionnogo okhrupchivaniya korpusnoi stali ot ee khimicheskogo sostava [On the mechanisms determining the dependence of the radiation embrittlement of the RPV steel on chemical composition], Voprosy Materialovedeniya, 1995, No 1, pp. 27–54.

36. Mathon, M. H., Barbu, A., Dunstetter, F., Maury, F., Lorenzelli, N., de Novion, C. H., Experimental study and modeling of copper precipitation under electron irradiation in dilute FeCu binary alloys, J. Nucl. Mater., 1997, V. 245, pp. 224–237.

37. Rogozhkin, S. V., Nikitin, A. A., Aleev A. A., Zaluzhny A. G.,Chernobaeva A. A., Erak D. Yu., Strombakh, Ya. I., Zabusov, O. O., Issledovanie tonkoi struktury materiala svarnogo shva s vysokim soderzhaniem fosfora korpusa reaktora VVER-440 posle oblucheniya, otzhiga i povtornogo oblucheniya [Investigation of the fine structure of the weld metal with a high phosphorus content of the WWER-440 RPV after irradiation, annealing and re-irradiation], Nuclear Physics and Engineering, 2013, No 4(1), pp. 73–82.

38. Boydon, F., McElroy, R.,Gage, G., Phythian, W., Low Temperature Embrittlement of RPV Support Structure Steel, STP1270. Proc. 17th International Symposium: Effects of Radiation on Materials, Gelles, D.S. Nanstad, R.K., Kumar, A.S., Little, E.A, (Eds.), American Society of Testing and Materials, 1996, V. 1270.

39. McElroy, R. J., Williams, Т. J., Boydon, F. M. D., Hemsworth, В., Low Temperature Embrittlement of LWR RPV Support Structures, Int. J. Pres. Ves. Piping, 1993, V. 54, Issue 1–2, pp. 171–211.

40. Miller, M. K., Chernobaeva, A. A., Strombakh, Ya. I., Russel, K. F., Nanstad, R. K., Erak, D. Yu., Zabusov, O. O., Evolution of the nanostructure of VVER-1000 RPV materials under neutron irradiation and post irradiation annealing, J. Nucl. Mater., 2009, V. 385, pp. 615–622.

41. Gurovich B., Kuleshova E., Strombakh Ya., Erak D., Chernobaeva A., Zabusov O., Fine structure behaviour of VVER-1000 RPV materials under irradiation, J. Nucl. Mater., 2009, V. 389, pp. 490–496.

42. Kryukov, A., Debarberis, L., Ballesteros, A., Krsjak, V., Burcl, R., Rogozhkin, S. V., Nikitin, A. A., Aleev, A. A., Zaluzhnyi, A. G., Grafutin, V. I., Ilyukhina, O. V., Funtikov, Yu. V., Zeman, A., Integrated analysis of WWER-440 RPV weld re-embrittlement after annealing, J. Nucl. Mater., 2012, V. 429, pp. 190–200. DOI: 10.1016/j.jnucmat.2012.06.005.

43. Miller, M. K., Rassell, K. F., Kocik, J., Keilova, E., Embrittlement of low copper VVER 440 surveillance samples neutron-irradiated to high fluences, J. Nucl. Mater. 2000, V. 282, pp. 83–88.

44. Kirk, M., Assessment of flux effect exhibited by IVAR database, Proc. of the IAEA Technical Meeting on Radiation Embrittlement and Life Management of Reactor Pressure Vessels, 18–22 October, 2010, Znojmo, 2010.

45. Eason, E. D., Odette, G. R., Nanstad, R. K., Yamamoto, T., A Physically Based Correlation of Irradiation-Induced Transition Temperature Shifts for RPV Steels, ORNL/TM-2006/530, Nov. 2007.

46. Margolin, B. Z., Shvetsova, V. A., Gulenko, A. G., Kostylev, V. I., Application of Prometey local approach to brittle fracture: development and application. Eng. Fract. Mech., 2008, V. 75, pp. 3483–3498.

47. Margolin, B. Z., Shvetsova, V. A., Gulenko, A. G., Radiation embrittlement modeling in multi-scale approach to brittle fracture of RPV steels, Int. J. of Fracture, 2013, V.179, Issue 1, pp. 87–108.

48. Chernobaeva, A. A., Kryukov, A. M., Amaev, A. D., Erak, D. Yu., Platonov, P. A., Strombakh, Y. I., The Role of Flax Effect on Radiation Embrittlement of WWER-440 Reactor Pressure Vessel Materials, Moscow, NRC “Kurchatov Institute”, Proc. of the IAEA Technical Meeting, Gus Khrustalny, Russia, 2008, pp. 38–53.

49. Kryukov, A., Blagoeva, D., Debarberis, L., Flux effect analysis in WWER-440 reactor pressure vessel steels, J. Nucl. Mater., 2013, V. 443, Issue 1–3, pp. 171–175.


Review

For citations:


Margolin B.Z., Yurchenko E.V., Kostylev V.I., Morozov A.M., Varovin A.Ya., Rogozhkin S.V., Nikitin A.A. On the radiation embrittlement of materials of support structures for WWER RPV. Part 2. Analysis of the completed studies. Voprosy Materialovedeniya. 2018;(2(94)):193-208. (In Russ.) https://doi.org/10.22349/1994-6716-2018-94-2-193-208

Views: 603


ISSN 1994-6716 (Print)