

X-ray non-destructive testing – an essential tool during modern aeronautics material technology design and development
https://doi.org/10.22349/1994-6716-2018-95-3-213-224
Abstract
The X-ray non-destructive testing process is carried out by the system, which includes: the object of control (OC); source of radiation; detector; operator. The X-ray radiation and the object of control interaction formed the radiation image as X-ray doze distribution in accordance with the properties of the OC. At this stage, useful information about the OK is formed, which one is partially lost, partially distorted, and veiled with noise when the radiation image is converted into an optical one. The optical image is analyzed by operator, and the result of the control depends from his physical and emotional state.
This article presents a phased analysis of the entire radiation monitoring system. The first stage is the radiation image formation. Theoretical estimate of X-ray inspection system minimum detected defect size was made using space frequency spectrum analysis. The second stage is the transformation of the radiation image into an optical one. We represented the simulation of this process and obtained a modulation of how the operator sees the X-ray optical image and makes a decision about the OC state. Analyzed the X-ray digital image formation and determined the energy choice criteria when applied digital radiography.
About the Authors
O. G. OspennikovaRussian Federation
Cand. Sc. (Eng)
17, Radio St, 105005 Moscow
E. I. Kosarina
Russian Federation
Dr. Sc. (Eng)
17, Radio St, 105005 Moscow
O. A. Krupnina
Russian Federation
17, Radio St, 105005 Moscow
References
1. Kablov, E.N., Kliuchevaya problema – materialy [A key problem is the materials], Tendentsii i oriyentiry innovatsionnogo razvitiya Rossii [Trends and Guidelines for Innovative Development of Russia], Moscow: VIAM, 2015, pp. 458–464.
2. Kablov, E.N., Innovatsionnye razrabotki FGUPVIAM po realizatsii “Strategicheskikh napravleniy razvitiya materialov i tekhnologiy ikh pererabotki na period do 2030 goda” [Innovative developments FSUE “VIAM” on the implementation of “Strategic directions of development of materials and technologies for their processing for the period until 2030”], Aviatsionnye materialy i tekhnologii, 2015, No. 1, pp. 3–33. DOI:10.18577/2071-9140-2015-0-1-3-33.
3. Kablov, E.N., Rossii nuzhny materialy novogo pokoleniya [Russia needs materials of a new generation], Redkie zemli, 2014, No 3, pp. 8–13.
4. Kablov, E.N., Dominanta natsionalnoy tekhnologicheskoy initsiativy. Problemy uskoreniya razvitiya additivnykh tekhnologiy v Rossii [Dominant of the national technology initiative. Problems of Accelerating the Development of Additive Technologies in Russia], Metally Yevrazii, 2017, No 3, pp. 2–6.
5. Kliuev, V.V., Sosnin, F.R., Teoriya i praktika radiatsionnogo kontrolya [Theory and practice of radiation monitoring]: handbook for university students, Moscow: Mashinostroenie, 1998.
6. Kosarina, E.I., Stepanov, A.V., Demidov, A.A., Mikhailova, N.A., Krupnin a, O.A., Formirovanie radiatsionnykh izobrazheniy defektov pri radiatsionnom nerazrushayushchem kontrole, Vestnik MGTU im. N.E. Baumana. Series Mashinostroenie [Formation of radiation images of defects in radiation nondestructive testing, Bulletin of the BaumanMoscow State Technical University], 2016, No 4, pp. 81–92. DOI: 10.18698/0236-3941-2016-4-81-92
7. Moiseev, N.N., Matematicheskie zadachi sistemnogo analiza [Mathematical problems of system analysis: handbook for students], Moscow: LIBROKOM, 2012.
8. Kalman R., Farb P., Arbib M., Ocherki po matematicheskoy teorii sistem [Essays on the Mathematical Theory of Systems], Moscow: LIBROKOM, 2012.
9. Sukharev, A.G., Minimaksnye algoritmy v teorii chislennogo analiza [Minimax algorithms in the theory of numerical analysis], Moscow: Nauchnaya i uchebnaya literatura, 2010.
10. Golovinsky, P.A., Matematicheskie modeli [Mathematical models], Moscow: Nauchnaya i uchebnaya literatura, 2011, pp. 56–73.
11. Gorbunov, V.I., Epifanov, B.N., Avtomaticheskie ustroystva v radiatsionnoy defektoskopii [Automatic devices in radiation defectoscopy], Moscow: Atomtizdat, 1979.
12. Savvina, N.A., Kosarina, E.I., Miroshin, K.G., Stepanov, A.V., Teoretichesky raschet i prakticheskie sposoby opredeleniya veroyatnosti obnaruzheniya defektov v aviatsionnykh materialakh [Theoretical calculation and practical ways to determine the probability ofdetection of defects in aviation materials], Aviatsionnye materialy i tekhnologii, 2005, No 4, pp. 17–22.
13. Savvina, N.A., Kosarina, E.I., Dalin, M.A., Stepanov, A.V., Modelirovanie protsessov formirovaniya opticheskogo izobrazheniya i ikh rasshifrovki [Modeling the processes of optical image formation and decoding], Kontrol. Diagnostika, 2009, No 12, pp. 24–28.
14. Kosarina, E.I., Stepanov, A.V., Otsenka veroyatnosti obnaruzheniya defektov izdeliy posredstvom modelirovaniya protsessov formirovaniya i rasshifrovki ikh opticheskikh izobrazheniy [Estimation of the probability of detecting product defects by modeling the processes of formation and decoding of their optical images], Defektoskopiya, 2017, No 1, pp. 66–75.
15. Stepanov, A.V., Kosarina, E.I., Demidov, A.A., Kompiuternaya rentgenografiya s primeneniem fotosimulirovannykh plastin [Computerradiography using photo-simulated plates], Aviatsionnye materialy i tekhnologii, 2015, No 4, pp. 79–85.
16. Stepanov, A.V., Kosarina, E.I., Savvina, N.A., Usachev, V.E., Makro- i mikroporistost v splavakh na osnove alyuminiya i nikelya,obnaruzheniye ee rentgenoskopicheskimi metodami nerazrushayushchego kontrolya [Macro- and microporosity in aluminum-nickel-based alloys, detection by fluoroscopic methods of nondestructive testing], Aviatsionnye materialy i tekhnologii, 2012, No S, pp. 423–430.
17. Mayorov, A.A., Tsifrovye tekhnologii v nerazrushayushchem kontrole [Digital technologies in nondestructive testing], Sfera Neftegaz, 2009, No 9, pp. 26–37.
18. Kosarina, E.I., Krupnina, O.A., Demidov, A.A., Turbin, E.M., Digital radiography in nondestructive control of aviation equipment Aviatsionnye materialy i tekhnologii, 2017, No S, pp. 562–574. DOI: 10.18577/2071-9140-2017-0-S-562-574.
Review
For citations:
Ospennikova O.G., Kosarina E.I., Krupnina O.A. X-ray non-destructive testing – an essential tool during modern aeronautics material technology design and development. Voprosy Materialovedeniya. 2018;(3(95)):213-224. (In Russ.) https://doi.org/10.22349/1994-6716-2018-95-3-213-224