Preview

Voprosy Materialovedeniya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Promising hybrid fabrics based on carbon and aramid fibers as a reinforcing filler for polymer composites

https://doi.org/10.22349/1994-6716-2019-98-2-86-95

Abstract

The paper considers possibilities of using a hybrid fabric made of high-modulus carbon yarn brand ZhGV and high-strength aramid yarns brand Rusar-NT for polymer composites reinforcement. The results of studies of the physical and mechanical characteristics of hybrid composite material and values of the implementation of the strength and elasticity carbon fibers and aramid module for composite material are presented.

 

About the Authors

G. F. Zhelezina
Federal State Unitary Enterprise “All–Russian Scientific Research Institute of Aviation Materials” (FSUE VIAM)
Russian Federation
Cand Sc. (Eng)


V. G. Bova
AO NPP Termoteks (JSC Scientific-Industrial Enterprise THERMAL RESISTANT TEXTILE)
Russian Federation
Cand Sc. (Eng)


S. I. Voinov
Federal State Unitary Enterprise “All–Russian Scientific Research Institute of Aviation Materials” (FSUE VIAM)
Russian Federation


A. Ch. Kan
Federal State Unitary Enterprise “All–Russian Scientific Research Institute of Aviation Materials” (FSUE VIAM)
Russian Federation


References

1. Kablov, E.N., Sovremennye materialy – osnova innovatsionnoy modernizatsii Rossii [Modern materials, the basis of innovative modernization of Russia], Metally Yevrazii, 2012, No 3, pp. 10–15.

2. Kablov, E.N., Materialy novogo pokoleniya – osnova innovatsiy, tekhnologicheskogo liderstva i natsionalnoy bezopasnosti Rossii [Materials of the new generation, the basis of innovation, technological leadership and national security of Russia], Intellekt i tekhnologii, 2016, No 2 (14), pp. 16–21.

3. Kablov, E.N., Innovatsionnye razrabotki FGUP VIAM po realizatsii Strategicheskikh napravleniy razvitiya materialov i tekhnologiy ikh pererabotki na period do 2030 goda [Innovative developments of FSUE “VIAM” for the implementation of the “Strategic directions for the development of materials and technologies for their processing for the period up to 2030”], Aviatsionnye materialy i tekhnologii, 2015, No 3–33. DOI: 10.18577 / 2071-9140-2015-0-1-3-33.

4. Kablov, E.N., Materials and chemical technologies for aircraft engineering, Herald of the Russian Academy of Sciences, 2012, V. 82, No 3, pp. 158–167.

5. Gunyaev, G.M., Struktura i svoystva polimernykh voloknistykh kompozitov [The structure and properties of polymer fiber composites], Moscow: Khimiya, 1981, pp. 116–118.

6. Raskutin, A.E., Konstruktsionnye ugleplastiki na osnove novykh svyazuyushchikh rasplavnogo tipa i tkaney Porcher [Structural carbon fiber composites based on new molten type binders and Porcher fabrics], Novosti materialovedeniya. Nauka i tekhnika, 2013, No 5, pp. 1–10. URL: http: // www. materialsnews.ru (reference date 29/01/2019).

7. Raskutin, A.E., Sokolov, I.I., Ugleplastiki i stekloplastiki novogo pokoleniya [Carbon plastics and fiberglass plastics of a new generation], VIAM Proceedings, 2013, No 4, p. 9. URL: http://www.viamworks.ru (appeal date 01/29/2019).

8. Bakhareva, V.Ye., Nikolaev, G.I., Sovremennye mashinostroitelnye materialy. Nemetallicheskie materialy [Modern machine-building materials. Non-metallic materials], St Petersburg: Professional, 2012.

9. Mikhaylin, Yu.A., Konstruktsionnye polimernye kompozitsionnye materialy [Structural polymer composite materials], St Petersburg: Nauchnye osnovy i tekhnologii, 2013.

10. Baker, A., Dutton, S., Kelly, D., Composite materials for aircraft structures, American Institute of Aeronautics and Astronautics, 2004, pp. 249–257.

11. Barbero, E.J., Composite Materials Design, CRCPress, 2018, p. 45.

12. Shuldeshova, P.M., Zhelezina, G.F., Vliyanie atmosfernykh usloviy i zapylennosti sredy na svoystva konstruktsionnykh organoplastikov [Influence of atmospheric conditions and dustiness of the environment on the properties of structural organoplastics], Aviatsionnye materialy i tekhnologii, 2014, No 1, pp. 64–68. DOI 10.18577 / 2071-9140-2014-0-1-64-68.

13. Zhelezina, G.F., Solovyova, N.A., Makrushin, K.V., Rysin, L.S., Polimernye kompozitsionnye materialy dlya izgotovleniya pylezashchitnogo ustroystva perspektivnogo vertoletnogo dvigatelya [Polymer composite materials for the manufacture of dust-proof device promising helicopter engine], Aviatsionnye materialy i tekhnologii, 2018, No 1, pp. 58–63. DOI: 10.18577/2071-9140-2018-0-1-58-63.

14. Kablov, E.N., Strategicheskie napravleniya razvitiya materialov i tekhnologiy ikh pererabotki na period do 2030 goda [Strategic directions of development of materials and technologies for their processing for the period up to 2030], Aviatsionnye materialy i tekhnologii, 2012. No S, pp. 7–17.

15. Zhelezina, GF, Voinov, S.I., Chernykh , T.E., Chernykh, K.Yu., Novye aramidnye volokna Rusar NT dlya armirovaniya konstruktsionnykh organoplastikov [New aramid fibers Rusar NT for the reinforcement of structural organoplastics], Voprosy Materialovedeniya, 2015, No 1 (81), pp. 60–72.

16. Tikhonov, I.V., Tokarev, A.V., Shorin, S.V., Shchetinin, V.M., Chernykh, T.E., Bova, V.G., Russian aramid fibers: past − present – future, Fiber Chemistry, 2013, No 5, pp. 1–8.

17. Kulagina, G.S., Zhelezina, G.F., Tikhonov, I.V., Doriomedov, M.S., Aramidnye organoplastiki, sostoyanie i perspektivy [Aramid organoplasty, condition and prospects], Proceedings of the 2nd scientific technical conference on polymeric composite materials and production technologies of the new generation, Moscow: VIAM, 2017, pp. 79–91.


Review

For citations:


Zhelezina G.F., Bova V.G., Voinov S.I., Kan A.Ch. Promising hybrid fabrics based on carbon and aramid fibers as a reinforcing filler for polymer composites. Voprosy Materialovedeniya. 2019;(2(98)):86-95. (In Russ.) https://doi.org/10.22349/1994-6716-2019-98-2-86-95

Views: 383


ISSN 1994-6716 (Print)