

Quality control of steel for large-sized welded structures of Arctic shelf. Application of Russian and foreign requirements
https://doi.org/10.22349/1994-6716-2019-98-2-136-153
Abstract
Future large-scale development of Arctic inevitably requires marine structures both of Russian and foreign manufacturers and, correspondingly, applying of domestic and foreign steels. So, it is expedient to compare Russian and foreign systems of standard requirements for steel products and welded joints’ metal applied at low temperatures. The paper analyzes their theoretical and experimental grounding as it is extremely important because the difference in requirements serves an instrument to drive out Russian steel manufacturers from international projects.
About the Author
V. Yu. FilinRussian Federation
Cand Sc. (Eng)
References
1. Zerbst, U., Schödel, M., Webster, S., Ainsworth, R., Fitness-for-service fracture assessment of structures containing cracks: A workbook based on the European SINTAP/FITNET procedure, Elsevier, 2007.
2. BS 7910:2013+A1:2015: Guide to methods for assessing the acceptability of flaws in metallic structures.
3. Russian Maritime Register of Shipping. ND No 2-020101-104-E: Pravila klassifikatsii i postroyki morskikh sudov. XIII: Materialy [Rules for classification and construction of seagoing ships. Part XIII: Materials], St Petersburg, 2018.
4. DNVGL-OS-B101: Offshore standard. Metallic materials, 2018, January
5. Ilyin, A.V., Leonov, V.P., Filin, V.Yu., Razrabotka metodiki otsenki soprotivleniya khrupkomu razrusheniyu svarnykh konstruktsiy dlya shelfa Arktiki [Development of an assessment method for cleavage fracture resistance of welded structures at Arctic shelf], Proceedings of Russian Maritime Register of Shipping, 2008, No 31, pp. 147–175.
6. Ilyin, A.V., Filin, V.Yu., On the Ratio of Local and Energy Criteria of Unstable Cleavage Fracture of Cold-Resistant Steel, Inorganic Materials, 2014, V. 50, No 15, pp. 1543–1548.
7. Ilyin, A.V., Filin, V.Yu., Problemy nauchnogo obosnovaniya trebovaniy k stalyam dlya svarnykh konstruktsiy Arktiki [Problems of scientific substantiation of requirements for steels of Arctic welded structures], Neft. Gas. Novatsii, 2015, No 10, p. 56–61.
8. Ilyin, A.V., Filin, V.Yu., Artemiev, D.M., Sopostavleniye razlichnykh metodik otsenki treshchinostoykosti metalla svarnykh konstruktsiy, rabotayushchikh v arkticheskikh usloviyakh [Comparison of different methods of fracture toughness evaluation of metal of welded structures operating in Arctic conditions], Proceedings of Russian Maritime Register of Shipping, 2015, No 40/41, pp. 62–71.
9. Russian Maritime Register of Shipping. ND No. 2-020201-015-E: Pravila klassifikatsii, postroyki i oborudovaniya plavuchikh burovykh ustanovok i morskikh statsionarnykh platform [Rules for the classification, construction and equipment of mobile drilling units and offshore fixed platforms], St Petersburg, 2018.
10. Gumenyuk, V.A., Ivanov, Yu.G., Krasikov, S.V., Ilyin, A.V., Filin, V.Yu., Issledovanie soprotivleniya nizkotemperaturnomu khrupkomu razrusheniyu novykh staley dlya magistralnykh truboprovodov i sudostroitelnykh staley vysokoy prochnosti [Studying the low-temperature brittle fracture resistance of the new steels for main pipelines and shipbuilding steels of high strength], Transactions of the Krylov Shipbuilding Research institute, 2010, No 56, pp. 107–118.
11. Ilyin, A.V., Artemiev, D.M., Filin, V.Yu., Modelirovanie MKE rasprostraneniya i tormozheniya khrupkogo razrusheniya v plastinakh s iskhodnoy treshchinoy [Simulation of the propagation and arrest of the brittle fracture in steel plates with initial crack using finite element method], Zavodskaya laboratoriya. Diagnostika materialov, 2018, V. 84, No 1(I), pp. 56–65.
12. Ilyin, A.V., Artemiev, D.M., Filin, V.Yu., Analiz korrelyatsii kriticheskikh temperatur vyazko-khrupkogo perekhoda i temperatury tormozheniya khrupkogo razrusheniya na osnove chislennogo modelirovaniya MKE [Estimation of critical temperatures of brittle-ductile transition and brittle fracture arrest correlation based on finite element modeling], Zavodskaya laboratoriya. Diagnostika materialov, 2018, V. 84, No 2, pp. 46–55.
13. Russian Maritime Register of Shipping. ND No. 2-020301-005-E: Pravila klassifikatsii i postroyki morskikh podvodnykh truboprovodov [Rules for the classification and construction of subsea pipelines], St Petersburg, 2017.
14. Ilyin, A.V., Filin, V.Yu., Opredelenie parametra treshchinostoykosti CTOD dlya materiala netermoobrabatyvayemykh svarnykh soedineniy konstruktsiy shelfa i obosnovanie trebovaniy k rezultatam ispytaniy [Evaluation of fracture toughness parameter CTOD for the material of non-post-weld-heat-treated welded joints of shelf structures and substantiation of the requirements for test results], Conference Proceedings DFM–2006 (Deformation and destruction of materials), Moscow: Interkontakt nauka, 2006, pp. 630–632.
15. Evenko, V.I., Bashaev, V.K., Ilyin, A.V., Leonov, V.P., Filin, V.Yu., Schegoleva, E.G., Problemy attestatsii vysokoprochnykh khladostoykikh materialov dlya konstruktsiy arkticheskogo shelfa Rossii, primeneniye raschotnykh otsenok soprotivleniya khrupkomu razrusheniyu dlya obosnovaniya trebovaniy k stalyam i svarnym soedineniyam [Problems of high-strength cold resistant materials certification for Russian Arctic shelf structures, application of cleavage fracture resistance calculated estimates to substantiate requirements for steels and welded joints], Voprosy Materialovedeniya, 2009, Issue 3(59), p. 242–262.
16. Filin, V.Yu., Raschoty soprotivleniya khrupkomu razrusheniyu metalla svarnykh konstruktsiy iz khladostoykikh nizkolegirovannykh staley [Cleavage fracture resistance calculation of welded structures made of cold resistant low-alloyed steels], Conference proceedings DFMN-2015 (Deformation and destruction of materials and nanomaterials), Moscow: IMET RAS, pp. 835–837.
17. Ilyin, A.V., Filin, V.Yu., Bashaev, V.K., K voprosu ob opredelenii treshchinostoykosti khladostoykoy vysokoprochnoy stali v tolshchine do 150 mm [On the problem of fracture evaluation of cold resistant high-strength steel up to 150 mm in thickness], Proceedings of Russian Maritime Register of Shipping, 2013, No 36, pp. 112–123.
18. ISO 2394:2015: General principles on reliability for structures, 2015. URL: https://www.iso.org/standard/58036.html (reference date 06/06/2019)
19. Ermolov, I.N., Lange, Yu.V., Nerazrushayushchiy kontrol. V. 3: Ultrazvukovoy kontrol [Nondestructive inspection. V. 3: Ultrasonic inspection], Moscow: Mashinostroenie, 2004.
20. API STD 1104: Welding of Pipelines and Related Facilities. 2013. URL: https: //law.resource.org/pub/us/cfr/ibr/002/api.1104.1999.pdf (reference date 06/06/2019)
21. Filin, V.Yu., Ilyin, A.V., Opisanie veroyatnostnogo podkhoda k vyboru koeffitsienta zapasa v uslovii prochnosti svarnykh soedineniy [Description of a probabilistic approach to the assignment of the reserve factor in the strength condition of welded joints] Conference proceedings TestMat-2019. Moscow: VIAM, 2019, pp. 355–371.
22. Pussegoda, L.N., Malik, L., Morrison, J., Measurement of Crack Arrest Fracture Toughness of a Ship Steel Plate, J. of Testing & Evaluation, 1998, V.26, pp. 187–197.
23. ASME BPVC Section XI. Division 1. Rules for inspection and testing of components of light-water cooled plants. Article A-4000: Material properties.
24. Motovilina, G.D., Filin, V.Yu., Glibenko, O.V., Osobennosti razrusheniya vysokoprochnoy svarivayemoy konstruktsionnoy stali dlya arkticheskogo primeneniya pri temperature, blizkoy k temperature nulevoy plastichnosti [Fracture behavior of structural extra high strength steel for Arctic application at temperatures close to nil-ductility one], Deformatsiya i razrushenie materialov, 2015, No 4, pp. 42–48.
Review
For citations:
Filin V.Yu. Quality control of steel for large-sized welded structures of Arctic shelf. Application of Russian and foreign requirements. Voprosy Materialovedeniya. 2019;(2(98)):136-153. (In Russ.) https://doi.org/10.22349/1994-6716-2019-98-2-136-153