Preview

Voprosy Materialovedeniya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Model of corrosion cracking of irradiated austenitic steels. Part 1. Analysis of damage mechanisms and formulation of the defining

https://doi.org/10.22349/1994-6716-2019-97-1-154-177

Abstract

Mechanisms having a potential effect on irradiation assisted stress corrosion cracking (IASCC) of austenitic steels in the LWR environment have been analyzed. Based on the analysis and generalization of reference and original data on IASCC, an IASCC initiation criterion has been formulated. Conditions for grainboundary microcrack propagation by IASCC mechanism have been formulated. The nature of low-temperature creep of irradiated austenitic steels has been considered, constitutive equations have been derived. Relying on the formulated criterion of grain-boundary microcrack nucleation and the derived creep equations, an IASCC initiation model has been developed. The model allows one to predict the dependence of the threshold stress σIASCC th on neutron dose and also to calculate the IASCC initiation time with stresses exceeding σIASCCth .

 

About the Authors

B. Z. Margolin
NRC ”Kurchatov Institute” – CRISM “Prometey”
Russian Federation
Dr Sc. (Eng)


A. A. Sorokin
NRC ”Kurchatov Institute” – CRISM “Prometey”
Russian Federation
Cand Sc. (Eng)


N. E. Pirogova
NRC ”Kurchatov Institute” – CRISM “Prometey”
Russian Federation


V. A. Potapova
NRC ”Kurchatov Institute” – CRISM “Prometey”
Russian Federation


Aki Toivonen
VTT Technical Research Centre of Finland
Finland


Faiza Sefta
EDF R&D, EDF-Lab Les Renardières
France


Cédric Pokor
EDF R&D, EDF-Lab Les Renardières
France


References

1. Piminov, V.A., Yevdokimenko, V.V., Nadezhnost na ves srok ekspluatatsii [Reliability for the entire lifetime], Rosenergoatom, 2015, No 2, pp. 16–19.

2. Karzov, G.P., Margolin, B.Z., Osnovnye mekhanizmy radiatsionnogo povrezhdeniya materialov VKU i materialovedcheskie problemy ikh dlitelnoy ekspluatatsii [Main mechanisms of radiation damage to materials of VKU and materials science problems of their long-term operation], Rosenergoatom, 2015, No 2, pp. 8–15.

3. Bruemmer, S.M., Simonen, E.P., Scott, P.M., et al., Radiation-induced material changes and susceptibility to intergranular failure of light-water-reactor core internals, J. Nucl. Mater., 1999, No 274, pp. 299–314.

4. Arioka, K., Yamada, T., Terachi, T., et al, Influence of Carbide Precipitation and Rolling Direction on Intergranular Stress Corrosion Cracking of Austenitic Stainless Steels in Hydrogenated High-Temperature Water, Corrosion, 2006, No 62, pp. 568–572.

5. Lozano-Perez, S., Yamada, T., Terachi, T., et al, Multi-scale characterization of stress corrosion cracking of cold-worked stainless steels and the influence of Cr content, Acta Materialia, 2009, No 57, pp. 5361–5381.

6. Nishioka, H., Fukuya, K., Fujii, K., Torimaru, T., IASCC Initiation in Highly Irradiated Stainless Steels under Uniaxial Constant Load Conditions, Journal of Nuclear Science and Technology, 2008, V. 45, No 10, pp. 1072–1077.

7. Jacobs, A.J., Wozadlo, J.P., Nakata, K., et al, Radiation effects on the stress corrosion and other selected properties of type 304 and type 316 stainless steel, Proc. of 3rd Intern. Symp. On Enviromental Degradation of Materials in Nuclear Power Systems Water Reactors, 1988, pp. 673–680.

8. Scott, P., A review of irradiation assisted stress corrosion cracking, J. Nucl. Mater, 1994, No 211, pp. 101–122.

9. Bruemmer, S.M., Charlot, L.A., Atterige, D.G., Sensitization development in austenitic stainless steels-measurement and prediction of thermomechanical history effects, Corrosion, 1987, No 44, p. 427.

10. Jacobs, A.J., Wozadlo, J.P., Nakata, K., et al, Grain boundary composition and irradiation-assisted stress corrosion cracking resistance in type 348 stainless steel, Corrosion, 1994, No 50, pp. 731– 740.

11. Pogodin, V.P., Bogoyavlensky, V.L., Sentyurev, V.P., Mezhkristallitnaya korroziya i korrozionnoe rastreskivanie nerzhaveyushchikh stalei v vodnykh sredakh [Intergranular corrosion and corrosion cracking of stainless steels in marine environment], Moscow: Atomizdat, 1970, p. 422.

12. Logan, Kh.L., Korroziya metallov pod napryazheniem [Corrosion of metals under voltage], Mos-cow: Metallurgiya, 1970, No 341.

13. Busby, J.T., Was, G.S., Kenik, E.A., Isolating the effect of radiation-induced segregation in irradiation-assisted stress corrosion cracking of austenitic stainless steels, J. Nucl. Mater, 2002. No 302, pp. 20–40.

14. Was, G.S., Farkas, D., Robertson, I.M., Micromechanics of dislocation channeling in intergranular stress corrosion crack nucleation, Current Opinion in Solid State and Materials Science, 2012, No 16, pp. 134–142.

15. Karlsen, W., Diego, G., Devrient, B., Localized deformation as a key precursor to initiation of intergranular stress corrosion cracking of austenitic stainless steels employed in nuclear power plants, J. Nucl. Mate, 2010 No 406, pp. 138–151.

16. Jiao, Z., Was, G.S., Localized deformation and IASCC initiation in austenitic stainless steels, J. Nucl. Mater, 2008, No 382, pp. 203–209.

17. Li, X., Al mazouzi, A., Deformation and microstructure of neutron irradiated stainless steels with different stacking fault energy, J. Nucl. Mater, 2009, No 385, pp. 329–333.

18. Little, E.A., Fracture mechanics evaluations of neutron irradiated type 321 austenitic steel, J. Nucl. Mater, 1986, No 139, pp. 261–276.

19. Margolin, B.Z., Fedorova, V.A., Filatov, V.M., Metod otsenki dolgovechnosti vnutrikorpusnykh ustroistv VVER po kriteriyu initsiatsii mezhkristallitnogo korrozionnogo rastreskivaniya obluchennykh austenitnykh stalei [A method of strength assessment of WWER reactor internals by the criterion of stress corrosion cracking in irradiated austenitic steels], Strength of materials, Vol. 44(2), 2012, pp. 115-128.

20. Margolin, B.Z., Gulenko, A.G., Buchatsky, A.A., Nesterova, E.V., Kashtanov, A.D., Issledovanie vliyaniya termicheskogo stareniya na dlitelnuyu prochnost i plastichnost stali H18N9 [Study of influence of thermal aging on prolonged strength and plastic of H18N9 steel], Voprosy Materialovedeniya, 2010, No 4 (64), pp. 118–127.

21. Fukuya, K., Current understanding of radiation-induced degradation in light water reactor structural materials, Journal of Nuclear Science and Technology, 2013, No 50 (3), pp. 213–254.

22. Garner, F.A., Void swelling and irradiation creep in light water reactor (LWR) environments, Understanding and Mitigating Ageing in Nuclear Power Plants, Woodhouse Publishing, 2010, pp.308–356.

23. Ernestova, M., Influence of the Neutron Spectrum on the Sensitivity to IASCC and Microstructure of CW 316 Material, Proc. of the 8th International Symposium Fontevraud 8, Contribution of Materials Investigations and Operating Experience to LWRs Safety, Performance and Reliability, SFEN, 2014.

24. Chen, Y., Rao, A.S., Alexandreanu, B., et al, Slow strain rate tensile tests on irradiated austenitic stainless steels in simulated light water reactor environments, Nuclear Engineering and Design, 2014, No 269, pp. 38–44.

25. Stephenson, K.J., Was, G.S., The role of dislocation channeling in IASCC initiation of neutron irradiated stainless steel, J. Nucl. Mater, 2016, No 481, pp. 214–225.

26. McMurtrey, M.D., Cui, B., Robertson, I., et al, Mechanism of dislocation channel-induced irradiation assisted stress corrosion crack initiation in austenitic stainless steel, Current Opinion in Solid State and Materials Science, 2015, No 19, pp. 305–314.

27. Margolin, B.Z., Pirogova, N.E., Potapova, V.A., et al, Issledovanie mekhanizmov korrozionnogo rastreskivaniya stali dlya VKU VVER na osnove imitatsionnykh ispytanii [Investigation of the mechanism of corrosion cracking of steel for VKU VVER based on simulation tests], Voprosy Materialovedeniya, 2017, No 4 (92), pp. 193–218.

28. Margolin, B.Z., Gulenko, A.G., Buchatsky, A.A., et al, Prognozirovanie skorosti rosta treshchiny v austenitnykh materialakh v usloviyakh polzuchesti i neitronnogo oblucheniya [Prediction of crack growth rate in austenitic materials under creep and neutron irradiation], Voprosy Materialovedeniya, 2005, No 4 (44), pp. 59–68.

29. Alexandreanu, B., Capell, B., Was, G.S., Combined effect of special grain boundaries and grain boundary carbides on IGSCC of Ni–16Cr–9Fe–xC alloys, Materials Science and Engineering A, 2001, No 300, pp. 94–104.

30. Scully, J., Fundamentals of Corrosion and Metal Protection, Moscow: Mir, 1978, p. 223.

31. West, E.A., McMurtrey, M.D., Jiao, Z., Was, G.S., Role of Localized Deformation in Irradiation-Assisted Stress Corrosion Cracking Initiation, Met. and. Mat. Trans, 2012, No 43A, pp. 136–146.

32. Toivonen, A., Aaltonen, P., Karlsen, W., et al, Post-irradiation SCC investigations on highly irradiated core internals component materials, Proceedings of Fontevraud 6 Conference "Contribution of Materials Investigations to Improve the Safety and Performance of LWRs", 18-22 Sept. 2006, Royal Abbey, France.

33. Toivonen, A., Ehrnstén, U., Karlsen, W., et al, Fractographic observations on highly irradiated AISI 304 steel after constant load tests in simulated PWR water and argon and after supplementary tensile and impact tests, Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power System – Water Reactors (The Minerals, Metals & Materials Society), 2005.

34. Pokor, Toivonen, A., Wintergerst, M., et al, Determination of the time to failure curve as a function of stress for a highly irradiated AISI 304 stainless steel after constant load tests in simulated PWR water environment, Proceedings of Fontevraud 7 Conference "Contribution of Materials Investigations to Improve the Safety and Performance of LWRs", 26-30 Sept. 2010, Avignon, France. O3-A008-T2.

35. Hirt, J., Lote, I., Teoriya dislokatsii [Dislocation theory], Moscow: Atomizdat, 1972, p. 599

36. Kan, R.U., Khaazen, P., Fizicheskoe metallovedenie [Physical metal science], Moscow: Metallurgiya, 1972, V. 3, p. 663.

37. Fukuya, K., Nishioka, H., Fujii, K., Fracture behavior of austenitic stainless steels irradiated in PWR, J. Nucl. Mater, 2008, No 378, pp. 211–219.

38. Nishioka, H., Fukuya, K., Fujii, K., Deformation Structure in Highly Irradiated Stainless Steels, Journal of Nuclear Science and Technology, 2008, No 45 (4), pp. 274–287.

39. Na mburi, H.K., Hojna, A., Zdenek, F., Effect of tensile strain on microstructure of irradiated core internal material, Proc. of the 24th International Conference Nuclear Energy for New Europe, Portoroz, Slovenia, 2015.

40. Fukuya, K., Nishioka, H., Fujii, K., et al, Characterization of surface oxides formed on irradiated stainless steels in simulated PWR primary water, Fontevraud 8: Conference on Contribution of Materials Investigations and Operating Experience to LWRs' Safety, Performance and Reliability, Avignon (France), 15–18 Sep, 2014.

41. Zuyok, V.A., Rud, R.A., Petelguzov, I.A., et al, Metodologiya issledovaniya korrozionnykh plenok na nerzhaveyushchikh stalyakh //Вопросы атомной науки и техники. − 2010. − №1(95). − С. 141–149.

42. Chukhrov, F.V., Mineraly. Spravochnik [Minerals. Directory], Vol. 3, ed. 3, Moscow: Nauka, 1967, p. 676.

43. Margolin, B.Z., Sorokin, A.A., Shvetsova, V.A., et al, The radiation swelling effect on fracture properties and fracture mechanisms of irradiated austenitic steels. Part I. Ductility and fracture toughness, J. Nucl. Mater, 2016, No 480, pp. 52–68.

44. Kachanov, L.M., O vremeni razrusheniya v usloviyakh polzuchesti [About the rupture time under creep], Izvestiya AN USSR, OTN, 1958, No. 8, pp. 3–10.

45. Rabotnov, Yu.N., Polzuchest elementov konstruktsii [Creep of design elements], Moscow: Nauka, 1966, p. 452.

46. Patra, A., McDowell, D.L., Continuum modeling of localized deformation in irradiated bcc materials, J. Nucl. Mater, 2013, No 432, pp. 414–427.


Review

For citations:


Margolin B.Z., Sorokin A.A., Pirogova N.E., Potapova V.A., Toivonen A., Sefta F., Pokor C. Model of corrosion cracking of irradiated austenitic steels. Part 1. Analysis of damage mechanisms and formulation of the defining. Voprosy Materialovedeniya. 2019;(2(98)):154-177. (In Russ.) https://doi.org/10.22349/1994-6716-2019-97-1-154-177

Views: 285


ISSN 1994-6716 (Print)