Preview

Voprosy Materialovedeniya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Model of corrosion cracking of irradiated austenitic steels. Part 2. Determination of model parameters and its verification

https://doi.org/10.22349/1994-6716-2019-98-2-178-190

Abstract

Based on the analysis and generalization of reference and original experimental data unknown coefficients, parameters and functions in constitutive equations of the model developed in the first part of article have been defined. The model has been verified. The model allows one to predict the dependence σIASCCth (below which SCC does not occur at any time of tests) on neutron dose and to calculate the time of SCC initiation at stresses higher than σIASCCth.

About the Authors

B. Z. Margolin
NRC ”Kurchatov Institute” – CRISM “Prometey”
Russian Federation
Dr Sc. (Eng)


A. A. Sorokin
NRC ”Kurchatov Institute” – CRISM “Prometey”
Russian Federation
Cand Sc. (Eng)


N. E. Pirogova
NRC ”Kurchatov Institute” – CRISM “Prometey”
Russian Federation


V. A. Potapova
NRC ”Kurchatov Institute” – CRISM “Prometey”
Russian Federation


Aki Toivonen
VTT Technical Research Centre of Finland
Russian Federation


Faiza Sefta
EDF R&D, EDF-Lab Les Renardières
Russian Federation


Cédric Pokor
EDF R&D, EDF-Lab Les Renardières
Russian Federation


References

1. Chen, Y., Rao, A.S., Alexandreanu, B., et al, Slow strain rate tensile tests on irradiated austenitic stainless steels in simulated light water reactor environments, Nuclear Engineering and Design, 2014, No 269, pp. 38–44.

2. Bailat, C., Almazouzi, A., Baluc, N., et al, The effects of irradiation and testing temperature on tensile behaviour of stainless steels, J. Nucl. Mater, 2000, 283–287, pp. 446–450.

3. Makin, M.J., Minter, F.J., Irradiation hardening in copper and nickel, Acta Metallurgica, 1960, V. 8, pp. 691–699.

4. Margolin, B.Z., Fedorova, V.A., Filatov, V.M., Metod otsenki dolgovechnosti vnutrikorpusnykh ustroistv VVER po kriteriyu initsiatsii mezhkristallitnogo korrozionnogo rastreskivaniya obluchennykh austenitnykh stalei [Method for assessing the durability of VVER internals by the criterion of initiation of intergranular corrosion cracking of irradiated austenitic steels], Voprosy Materialovedeniya, 2010 No 3 (63), pp. 105– 117.

5. Chopra, O.K., Degradation of LWR Core Internal Materials due to Neutron Irradiation, NUREG/CR-7027, U.S. Nuclear Regulatory Commission, 2010.

6. Nishioka, H., Fukuya, K., Fujii, K., Torimaru, T., IASCC Initiation in Highly Irradiated Stainless Steels under Uniaxial Constant Load Conditions, Journal of Nuclear Science and Technology, 2008, 45 (10), pp. 1072–1077.

7. Toivonen, A., Aaltonen, P., Karlsen, W., et al, Post-irradiation SCC investigations on highly irradiated core internals component materials, Proceedings of Fontevraud 6 Conference "Contribution of Materials Investigations to Improve the Safety and Performance of LWRs", 18–22 Sept. 2006, Royal Abbey, France.

8. Takakura, K., Nakata, K., Kubo, N., Fujimoto, K., Sakima, K., IASCC Evaluation Method of Irradiated Cold Worked 316SS Baffle Former Bolt in PWR Primary Water, Proc. of the ASME Pressure Vessels and Piping Division Conference PVR 2009, Prague, Czech Rebulic, 2009, PVP2009-77279.

9. Conermann, J., Shogan, R., Fujimoto, K., Yonezawa, T., Tamaguchi, Y., Irradiation effects in a highly irradiated cold worked stainless steel removed from a commercial PWR, Proc. of 12th Int. Conf. on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, USA, August 14–18, 2005, pp. 277–287.

10. Freyer, P., Mager, T., Burke, M., Hot cell crack initiation testing of serious heats of highly irradiated 316 stainless steel components obtained from three commercial PWRs, Proc. of 13th Intern. Conf. on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, Canada, August 19–23, 2007.

11. Kursevich, I.P., Margolin, B.Z., Prokoshev, O.Yu., Kokhonov, V.I., Mekhanicheskie svoistva austenitnykh stalei pri neitronnom obluchenii: vliyanie razlichnykh faktorov [Mechanical properties of austenitic steels in neutron irradiation: the influence of various factors], Voprosy Materialovedeniya, 2006, No 4 (48), pp. 55–68.

12. Sorokin, A.A., Margolin, B.Z., Kursevich, I.P., et al, Effect of neutron irradiation on tensile properties of materials for pressure vessel internals of WWER type reactors, J. Nucl. Mater, 2014, No 444, pp. 373– 384.

13. Fukuya, K., Current understanding of radiation-induced degradation in light water reactor structural materials, Journal of Nuclear Science and Technology, 2013, No 50 (3) pp. 213–254.

14. Pokor, C., Courtemanche, G., Tanguy, B., Massaud, J.P., Monteil, N., IASCC of Core Internals of PWRs: EDF R&D and Engineering program to assess internals lifetime management, In: Fontevraud 7 Symposium, Contribution of Materials Investigations to Improve the Safety and Performance of LWRs, Avignon, France, 26-30 September 2010, Paris, France, SFEN.


Review

For citations:


Margolin B.Z., Sorokin A.A., Pirogova N.E., Potapova V.A., Toivonen A., Sefta F., Pokor C. Model of corrosion cracking of irradiated austenitic steels. Part 2. Determination of model parameters and its verification. Voprosy Materialovedeniya. 2019;(2(98)):178-190. (In Russ.) https://doi.org/10.22349/1994-6716-2019-98-2-178-190

Views: 238


ISSN 1994-6716 (Print)