

Methodical approach for studying kinetics of short and long fatigue cracks growth for irradiated reactor materials. Part 1. Statement of problem. The effect of the initial notch acuity on the fatigue crack rate on small-sized specimens
https://doi.org/10.22349/1994-6716-2019-98-2-191-204
Abstract
The paper considers methodical issues in the experimental research of fatigue crack growth kinetics when testing irradiated small-sized specimens. The effect of the initial notch acuity is studied on the long crack growth rate. The stress concentration zone sizes are estimated for notches of various types. A brif literature review of the main problems in the study of the growth kinetics of short fatigue cracks has been performed. The tasks of further research are formulated.
About the Authors
V. I. SmirnovRussian Federation
Cand Sc. (Eng)
A. J. Minkin
Russian Federation
B. Z. Margolin
Russian Federation
Dr Sc (Eng)
V. I. Kokhonov
Russian Federation
References
1. Margolin B.Z., Minkin A.I., Smirnov V.I., et al., Issledovanie vliyaniya neitronnogo oblucheniya na staticheskuyu i tsiklicheskuyu treshchinostoykost khromonikelevoy austenitnoy stali [Research of influence of neutron irradiation on static and cyclic crack resistance a chromium-nickel austenitic steel], Voprosy Materialovedeniya, 2008, No 1 (53), pp. 111–122.
2. Margolin B.Z., Minkin A.I., Smirnov V.I., et al., Vliyanie neytronnogo oblucheniya na skorost rosta ustalostnykh treshchin v austenitnoy stali 08Kh18N10T i metalle svarnykh soedinenij [The influence of neutron irradiation on growth rate of fatigue cracks in an 18Cr–10Ni–Ti austenitic steel and metal of its welded joints], Voprosy Materialovedeniya, 2013, No 2 (74), pp. 123–138.
3. Margolin B.Z., Minkin A.I., S mirnov V.I., et al., Vliyanie radiatsionnogo raspukhaniya i osobennostey deformirovaniya na protsessy razrusheniya obluchennykh austenitnykh staley pri staticheskom i tsiklicheskom nagruzhenii. Chast II. Skorost rosta ustalostnykh treshchin [The influence of radiation swelling and features of deformation on processes of fracture of the irradiated austenitic steel at a static and cyclic loading. Part II. Growth rate of fatigue cracks, Voprosy Materialovedeniya, 2016, No 3 (87), pp. 192– 210.
4. ASTM Е647-99. Standard Test Method for Measurement of Fatigue Crack Growth Rates, Annual Book of ASTM Standards, Section 3, V. 03.01, pp. 1040–1085.
5. RCC-MR. Design and Construction Rules for Mechanical Components of FBR Nuclear Islands, Appendix A16, Edition 2002, AFCEN, France, 2002.
6. ISO 12108:2002. Metallic materials – Fatigue testing – Fatigue crack growth method.
7. Hertsberg, R.V., Deformatsiya i mekhanika razrusheniya konstruktsionnykh materialov. [Deformation and fracture mechanics of structural materials], Moscow: Metallurguiya, 1989.
8. RD EO 1.1.2.09.0714–2011 (Guidance document of the operating organization). Metodika rascheta prochnosti osnovnykh elementov reaktornykh ustanovok na bystrykh neytronakh s natrievym teplonositelem [Design procedure of strength of basic elements reactor installations on fast neutrons with the sodium heat-transfer agent], Moscow; St Petersburg, 2011.
9. Kelegemur, M.H., Chaki, T.K., The effect of various atmospheres on the threshold fatigue crack growth behavior of AISI 304 stainless steel, Int. J. of Fatigue, 2001, V. 23, pp. 169–174.
10. Forth, S.C., Newman, J.C., Jr., Forman, R.G., Anomalous Fatigue Crack Growth Data Generated using the ASTM Standards. 35th NSFFM, Reno, NV, May 2005.
11. Smirnov, V.I., Ilyina, T.A., Issledovanie vliyaniya urovnya nagruzheniya i asimmetrii tsikla nagruzheniya na kinetiku rosta kraevykh treshchin v tsilindricheskikh obraztsakh s koltsevym nadrezom [Research of influence of the level of loading and asymmetry of loading cycle on kinetics of edge cracks growth in cylindrical samples with a ring notch], Zavodskaia laboratoriya, 1989, No 6, pp. 73–77.
12. ASTM STP 1149. Small-Crack Test Methods, Larsen, J.M., Allison, J.E., (Eds.), ASTM, 1992.
13. RD 50-345-82 (Guidance document). Metodicheskie ukazaniya. Raschety i ispytaniya na prochnost. Metody mekhanicheskih ispytanij. Opredelenie kharakteristik treshchinostoykosti (vyazkosti razrusheniya) pri tsiklicheskom nagruzhenii [Methodological directions. Calculations and strength tests. Methods of mechanical tests. Definition of characteristics of crack resistance (fracture toughness) at a cyclic loading], 1983.
14. Peterson R. Koeffitsienty kontsentratsii napryazhenij. Grafiki i formuly dlya rascheta konstruktivnykh elementov na prochnost [Stress concentration factors. Charts and formulas for strength calculation of structural elements], Moscow: Mir, 1977.
15. Glinka, G., Newport, A., Universal features of elastic notch tip stress fields, Int. J. of Fatigue, V. 9, No 3 (1987), pp.143–150.
16. Haddad, M.H., S mith, K.N, Topper, T.H., Rasprostranenie korotkikh ustalostnyh treshchin [Fatigue crack propagation of short cracks], Teoreticheskie osnovy inzhenernykh raschetov, 1979, No 1, pp. 43–47.
17. Kudryavtsev, A.P., Nerasprostranyayushchiesya ustalostnye treshchiny [Nonpropogating fatigue cracks], Moscow: Mashinostroenie, 1982.
18. Zerbst U., Vormwald M., Pippan R. et al., About the fatigue crack propagation threshold of metals as a design criterion: A review, Engineering Fracture Mechanics, 2016, V. 153, pp.190–243.
19. McDowell, D.L., Basic issues in the mechanics of high cycle metal fatigue, Int. J. of Fracture, 1996, V. 80, pp. 103–145.
20. Tanaka, K., Nakai, Y., Propagation and non-propagation of short fatigue cracks at a sharp notch, Fatigue and Fracture. Engineering Material and Structure, 1983, No 6 (4), pp. 315–327.
21. Shin, C.S., Smith, R.A., Fatigue crack growth at stress concentrations: the role of notch plasticity and crack closure, Engineering Fracture Mechanics, 1998, No 29 (3), pp. 301–315.
22. Dong, P., Hong, J.K., Cao, Z., Stresses and stress intensities at notches: ‘anomalous crack growth’ revisited, Int. J. of Fatigue, 2003, V. 25, No 9–11, pp. 811–825.
23. Terentiev, V.F., Ustalostnaya prochnost metallov i splavov [Fatigue strength of metals and alloys], Moscow: Intermet Inzhiniring, 2002.
24. Ritchie, R.O., Lankford, J., Small fatigue cracks: a statement of the problem and potential solutions, Material Science and Engineering, 1996, V. 84, pp. 11–16.
25. Kishkina, S.I., Strukturnye osobennosti rosta korotkikh treshchin v vysokoprochnoy stali [Structural features of growth of short cracks in high-strength steel], Fiziko-khimicheskaya mekhanika materialov, 1991, V. 27, No 5, pp. 48–52.
26. Hussain, K., de los Rios, E.R., Navarro, A., A two-stage micromechanics model for short fatigue cracks, Engineering Fracture Mechanics, 1993, V. 44, No 3, pp.425–436.
27. Ciavarella, M., Monno, F., On the possible generalizations of the Kitagawa–Takahashi diagram and of the El Haddad equation to finite life, Int. J. of Fatigue, 2006, V. 28, pp. 1826–1837.
28. Atzori, B., Lazzarin, P., Meneghetti, G., Fracture mechanics and notch sensitivity, Fatigue and Fracture Engineering Materials and Structures, 2003, V. 26 (3), pp. 257–267.
29. Jones, R., et al., Weight functions, CTOD, and related solutions for cracks at notches, Engineering Failure Analysis, 2004, V. 11, No 1, pp.79–114.
30. Nishioka, T., Atluri, S.N., Analytical solution for embedded elliptical cracks, and finite element alternating method for elliptical surface cracks, subject to arbitrary loadings, Engineering Fracture Mechanics, 1983, V. 17, No 3, pp. 247–268.
31. Kujawski, D., Estimation of stress intensity factors for small cracks at notches, Fatigue and Fracture Engineering Materials and Structures, 1991, No 14 (10), pp. 953–965.
32. Jones, R., Peng, D., A simple method for computing the stress intensity factors for cracks at notches, Engineering Failure Analysis, 2002, V. 9, No 6, pp. 683–702.
33. Jergeus, H., A simple formula for the stress intensity factors of cracks in side notches, Int. J. of Fracture, 1972, V. 8, pp. 267–276.
34. Harkegard, G., An effective stress intensity factor and the determination of the notched fatigue limit. In Fatigue Thresholds: Fundamentals and Engineering Applications, V. II, pp. 867–879. Engineering Materials Advisory Services Ltd, 1982.
35. Wormsen, A., Fjeldstad, A., Harkegard, G., The application of asymptotic solutions to a semi-elliptical crack at the root of a notch, Engineering Fracture Mechanics, 2006, V. 73, No 13, pp. 1899– 1912.
36. Fjeldstad, A., Modelling of Fatigue Crack Growth at Notches and Other Stress Raisers, Thesis for the deg. ph. doc. Norwegian University of Science and Technology, Trondheim, 2007.
37. Gross, R., Mendelson, A., Plane elastostatic analysis of V-notched plates, Int. J. of Fracture Mechanics, 1972, V. 8, pp. 267–276.
38. Boukharouba, T., Tamine, T., Nui, L., et al., The use of notch stress intensity factor as a fatigue crack initiation parameter, Engineering Fracture Mechanics, 1995, V. 52, pp. 503–512.
39. Dini, D., Hills, D.A., When does a notch behave like a crack?, J. of Mech. Eng. Sc., 2006, No 220, pp. 27–43.
40. Malkin, J., Tetelman, A.S., Relation between K1C and Microscopic Strength for Low Alloy Steels, Engineering Fracture Mechanics, 1971, V. 3, pp.151–167.
41. Tobler, R.L., Shu, Q.S., Fatigue crack initiation from notches in austenitic stainless steels, Cryogenics, 1986, V. 26, pp. 396–401.
42. Jack, A.R., Price, A.T., The initiation of fatigue cracks from notches in mild steel plates, Int. J. of Fracture Mechanics, 1970, V. 6, pp. 401–409.
43. Gerasimchuk, O.N., Vzaimosvyaz mezhdu porogovymi razmahami koeffitsienta intensivnosti napryazhenij materiala i perekhod ot korotkoy k dlinnoy treshchine [Interconnection between threshold scope stress intensity factors of a material and transition from short to a long crack], Problemy prochnosti, 2014, No 3, pp. 77–95.
44. Miller, K.J., The two thresholds of fatigue behavior, Fatigue and Fracture Engineering Materials and Structures, 1993, V. 16, pp. 931–939.
45. Chapetti, M.D., Kitano, T., Tagawa, T., Miyata, T., Fatigue limit of blunt-notched components, Fatigue and Fracture Engineering Materials and Structures, 1998, V. 21, pp. 1525–1536.
46. Chapetti, M.D., Fatigue propagation threshold of short cracks under constant amplitude loading, Int. J. of Fatigue, 2003, V. 25, pp. 1319–1326.
47. Tanaka, K., Akiniwa, Y., Resistance-curve method for predicting propagation thresholds of short fatigue cracks at notches, Engineering Fracture Mechanics, 1988, V. 30, pp. 863–876.
48. Meggiolaro, M.A., Miranda, A.C.O., Castro, J.T.P., Short crack threshold estimates to predict notch sensitivity factors in fatigue, Int. J. of Fatigue, 2007, V. 29, No 9–11, pp. 2022–2031.
49. Tanaka, K., Nakai, Y., Yamashita, M., Fatigue growth threshold of small cracks, Int. J. of Fracture, 1981, V. 17, pp. 519–533.
50. Livieri, P., Tovo, R., Fatigue limit evaluation of notches, small cracks and defects: an engineering approach, Fatigue and Fracture Engineering Materials and Structures, 2004, V. 27, pp. 1037–1049.
51. Yare ma, S.Ya., Ob osnovakh i nekotorykh problemakh mekhaniki ustalostnogo razrusheniya, [On bases and some problems of mechanics of fatigue fracture], Fiziko-himicheskaya mekhanika materialov, 1987, V. 23, No 5, pp. 17–29.
52. Suresh, S., Fatigue of Materials, Cambridge University Press, 1998.
Review
For citations:
Smirnov V.I., Minkin A.J., Margolin B.Z., Kokhonov V.I. Methodical approach for studying kinetics of short and long fatigue cracks growth for irradiated reactor materials. Part 1. Statement of problem. The effect of the initial notch acuity on the fatigue crack rate on small-sized specimens. Voprosy Materialovedeniya. 2019;(2(98)):191-204. (In Russ.) https://doi.org/10.22349/1994-6716-2019-98-2-191-204