Preview

Voprosy Materialovedeniya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Phase structure and composition of nickel-based superalloy subject to synthesis by selective laser melting parameters and heat treatment

https://doi.org/10.22349/1994-6716-2019-99-3-14-22

Abstract

The structure of ZhS6K-VI alloy samples obtained by selective laser melting in a nitrogen atmosphere was studied at a scanning speed of 600, 1000 and 1200 mm/s, as well as after additional heat treatment. The distribution of alloying elements in the structure of synthesized and heat-treated samples, phase  composition, morphology, and phase structure were studied by transmission electron microscopy. The effect of scanning speed on the structure of the synthesized material and distribution of alloying elements within the crystallization cells are shown.

About the Authors

E. A. Lukina
Federal State Unitary Enterprise “All-Russian Scientific Research Institute of Aviation Materials” (FSUE VIAM)
Russian Federation
Cand Sc. (Eng)

17 Radio St, 105005 Moscow, Russian Federation



D. V. Zaitsev
Federal State Unitary Enterprise “All-Russian Scientific Research Institute of Aviation Materials” (FSUE VIAM)
Russian Federation
17 Radio St, 105005 Moscow, Russian Federation



A. V. Zavodov
Federal State Unitary Enterprise “All-Russian Scientific Research Institute of Aviation Materials” (FSUE VIAM)
Russian Federation
17 Radio St, 105005 Moscow, Russian Federation



References

1. Superalloys, (Eds.), E.S. Huron, R.C. Reed, M.C. Hardy, M.J. Mills, R.E. Montero, P.D. Portella, J. Telesman, John Wiley & Sons Inc., 2012, pp. 577–586.

2. Yadroitsev I., Krakhmalev P., Yadroitsava I., Johansson S., Smurov I., Energy input effect on morphology and microstructure of selective laser melting single track from metallic powder, Journal of Materials Processing Technology, 2013, No 213, pp. 606–613.

3. Shishkovsky I., et al., Nanostructural self-organization under selective laser sintering of exothermic powder mixtures, Applied Surface Science, 2009, V. 255, pp. 5565–5568.

4. Volkhonsky A.E., Dudkov K.V., Metody izgotovleniya prototipov i detalei agregatov razlichnykh izdelii promyshlennosti s pomoshchyu additivnykh tekhnologii [Methods of manufacturing prototypes and parts of aggregates of various products of industry using additive technologies], Obrazovatelnye tekhnologii, 2014, No 1, pp. 127–143.

5. Kablov E.N., Additivnye tekhnologii – dominanta natsionalnoi tekhnologicheskoi initsiativy [Additive technologies as dominant of national technological initiative], Intellekt i Tekhnologii, 2015, No 2 (11), pp. 52–55.

6. Kablov E.N., Nastoyashchee i budushchee additivnykh tekhnologii [Present and future of additive technologies], Metally Evrazii, 2017, No 1, pp. 2–6.

7. Magerramova L.A., Nozhnitskiy Yu.A., Vasilev B.E., Kinzburskiy V.S., Primenenie additivnykh tekhnologii dlya izgotovleniya detalei perspektivnykh gazoturbinnykh dvigatelei [The use of additive technologies for the manufacture of parts of promising gas turbine engines], Tekhnologiya legkikh splavov, 2015, No 4, pp. 7–13.

8. Wang Z., Guan K., Gao M., Li X., Chen X., Zeng X., The microstructure and mechanical properties of deposited-IN718 by selective laser melting, J. Alloys and Compounds, 2012, V. 513, pp. 518–523.

9. Gerasimov V.V., Ot monokristallicheskikh neokhlazhdaemykh lopatok k lopatkam turbin s pronikayushchim (transpiratsionnym) okhlazhdeniem, izgotovlennym po additivnym tekhnologiyam (obzor po tekhnologii litya monokristallicheskikh lopatok GTD) [From monocrystalline uncooled blades to turbine blades with penetrating (transpiration) cooling, made using additive technologies (review of the technology of single-blade GTE casting)], Trudy VIAM, 2016, No 10, article 01, URL: http://www.viam-works.ru (reference date 07/06/2019). DOI: 10.18577/2307-6046-2016-0-10-1-1.

10. Nerush S.V., Evgenov A.G., Issledovanie melkodispersnogo metallicheskogo poroshka zharo-prochnogo splava marki EP648-VI primenitelno k lazernoi LMD-naplavke, a takzhe otsenka kachestva naplavki poroshkovogo materiala na nikelevoi osnove na rabochie lopatki TVD [Study of fine metal powder of heat-resistant alloy of grade EP648-VI in relation to laser LMD-surfacing, as well as assessment of the quality of surfacing of nickel-based powder material on working blades of a HPT], Trudy VIAM, 2014, No 3, article 01, URL: http://www.viam-works.ru (reference date 07/06/2019). DOI: 10.18577/2307-6046-2014-0-3-1-1.

11. Evgenov A.G., Rogalev A.M., Nerush S.V., Mazalov I.S., Issledovanie svoistv splava EP648, poluchennogo metodom selektivnogo lazernogo splavleniya metallicheskikh poroshkov [Study of the properties of EP648 alloy, obtained by the method of selective laser alloying of metal powders], Trudy VIAM, 2015, No 2, article 02, URL: http://www.viam-works.ru (reference date 07/06/2019). DOI: 10.18577/2307-6046-2015-0-2-2-2.

12. Evgenov A.G., Gorbovets M.A., Prager S.M., Struktura i mekhanicheskie svoistva zharoprochnykh splavov VZH159 i EP648, poluchennykh metodom selektivnogo lazernogo splavleniya [Structure and mechanical properties of superalloys VZh159 and EP648, obtained by the method of selective laser alloying], Aviatsionnye materialy i tekhnologii, 2016, No S1, pp. 3–7, DOI 10.18577/2071-9140-2016-0-S1-8-15.

13. Nazarkin R.M., Petrushin N.V., Rogalev A.M., Strukturno-fazovye kharakteristiki splava ZHS32-VI, poluchennogo metodami napravlennoi kristallizatsii, granulnoi metallurgii i selektivnogo lazernogo splavleniya [Structural and phase characteristics of the alloy ZHS32-VI, obtained by the methods of directional solidification, granular metallurgy and selective laser fusion], Trudy VIAM, 2017, No 2, article 02 URL: http://www.viam-works.ru (reference date 07/06/2019). DOI: 10.18577/2307-6046-2017-0-2-2-2.

14. Dynin N.V., Zavodov A.V., Oglodkov M.S., Khasikov D.V., Vliyanie parametrov protsessa selektivnogo lazernogo splavleniya na strukturu aluminievogo splava sistemy Al–Si–Mg [The influence of the parameters of the process of selective laser fusion on the structure of an aluminum alloy of the Al–Si–Mg system], Trudy VIAM, 2017, No 10, article 01 (58), URL: http://www.viam-works.ru (reference date 07/06/2019). DOI: 10.18577/2307-6046-2017-0-10-1-1.

15. Kablov E.N., Lukina E.A., Sbitneva S.V., Khokhlatova L.B., Zaytsev D.V., Formirovanie metastabilnykh faz pri raspade tverdogo rastvora v protsesse iskusstvennogo stareniya Al-splavov [The formation of metastable phases in the decomposition of the solid solution in the process of artificial aging of Al-alloys], Tekhnologiya legkikh splavov, 2016, No 3, pp. 7–17.

16. Lukina E.A., Bazaleeva K.O., Tsvetova E.V., Petrushin N.V., Osobennosti formirovaniya struktury zharoprochnogo nikelevogo splava ZHS6K-VI pri selektivnom lazernom splavlenii [Features of the formation of the structure of the heat-resistant nickel alloy ZhS6K-VI with selective laser alloying], Tsvetnye metally, 2016, No 3, pp. 57–63.

17. Lukina E.A., Bazaleeva K.O., Petrushin N.V., Zaytsev D.V., Regularity of grain structure formation in alloy Ni–Al–W–Co–Nb–Cr–Ti–Mo, synthesized by SLM method during melting, heat treatment and heat isostatic pressure, Beam technologies and laser application Conference proceedings (BTLA-2015).

18. Lukina E.A., Bazaleeva K.O., Petrushin N.V., Treninkov I.A., Tsvetkova E.V. Vliyanie parametrov selektivnogo lazernogo plavleniya na strukturno-fazovoe sostoyanie zharoprochnogo nikelevogo splava ZhS6K-VI [Influence of the selective laser melting parameters on the structural-phase state of the heat-resistant nickel alloy ZhS6K-VI], Metally, 2017, No 4, pp. 63–70.

19. Treninkov I.A., Filonova E.V., Medvedev P.N., Lukina E.A., Issledovanie kristallograficheskoi tekstury v zharoprochnom nikelevom splave posle selektivnogo lazernogo splavleniya i termicheskoi obrabotki [Study of the crystallographic texture in a heat-resistant nickel alloy after selective laser alloying and heat treatment], MITOM, 2019, No 2 (764), pp. 65–68.


Review

For citations:


Lukina E.A., Zaitsev D.V., Zavodov A.V. Phase structure and composition of nickel-based superalloy subject to synthesis by selective laser melting parameters and heat treatment. Voprosy Materialovedeniya. 2019;(3(99)):14-22. (In Russ.) https://doi.org/10.22349/1994-6716-2019-99-3-14-22

Views: 389


ISSN 1994-6716 (Print)