

Progress, аchievements and prospects in the field of raw materials for carbon fibers (Review)
https://doi.org/10.22349/1994-6716-2019-99-3-99-115
Abstract
About the Author
M. I. ValuevaRussian Federation
Cand Sc. (Eng)
17 Radio St, 105005 Moscow, Russian Federation
References
1. Patent 9476147, United States of America: Gel spinning process for producing a pan-based precursor fiber. Publ. 25.10.2016.
2. Kablov, E.N., Innovatsionnye razrabotki VIAM po realizatsii “Strategicheskikh napravlenii razvitiya materialov i tekhnologii ikh pererabotki na period do 2030 goda” [Innovative developments of the All-Russian Scientific Research Institute of Aviation Materials within the project “Strategic development of materials and technologies for their processing up to 2030”], Aviatsionnye Materialy i Tekhnologii, 2015, No 1 (34), pp. 3–33, DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Patent 2535797, Russian Federation: Method of oxidative stabilization of polyacrylonitrile fibers filled with carbon nanoparticles. Publ. 20.12.2014.
4. Kablov, E.N., Kompozity: segodnya i zavtra [Composites: today and tomorrow], Metally Evrazii, 2015, No 1, pp. 36–39.
5. Patent 2013121957, Russian Federation: Method for oxidative stabilization of polyacrylonitrile fibers filled with carbon nanotubes. Publ. 10.12.2014.
6. Raskutin, A.E., Strategiya razvitiya polimernykh kompozitsionnykh materialov [Development strategy for polymer composite materials], Aviatsionnye Materialy i Tekhnologii, 2017, No S, pp. 344–348. DOI: 10.18577/2071-9140-2017-0-S-344-348.
7. Zhiteneva, D.A., Lysenko, A.A., Novoe v tekhnologii okislitelnoi stabilizatsii poliakrilo-nitrilnykh volokon [New in the technology of oxidative stabilization of polyacryl-nitrile fibers], Dizain. Materialy. Tekhnologiya. 2015, V. 5, No 40, pp. 19–22.
8. Valueva, M.I., Gulyaev, I.N., Uglerodnye volokna i ugleplastiki: istoriya, sovremennost i perspektivy razvitiya: Obzor [Carbon fibers and carbon plastics: history, modernity and development prospects: Review], Vse materialy: Encyclopedic Reference Book, 2016, No 11, pp. 2–8.
9. Skvortsov, I.Yu., Berkovich, A.K., Makarov, I.S., Uglerodnye volokna na osnove poliakrilo-nitrila s dobavkami nanovolokon oksida alyuminiya [Carbon fibers based on polyacryl-nitrile with the addition of alumina nanofibres], Fizika voloknistykh materialov: struktura, svoistva, naukoemkie tekhnologii i materialy (SMARTEX), 2016, V. 1, No 1, pp. 116–120.
10. Lysenko, A.A., Tendentsii formirovaniya mirovogo rynka uglerodnykh volokon: Obzor [Trends in the formation of the global carbon fiber market: Review], Tekhnicheskii tekstil, 2005, No 12, URL: http://rustm.net/catalog/article/88.html (reference date 18/09/2019).
11. Patent 9409337, United States of America: Polyacrylonitrile/cellulose nano-structure fibers. Publ. 09.08.2016.
12. Lebedeva, A.I., Khlebnikov, V.V., Rynok uglerodnykh volokon: sostoyaniye i perspektivy [Carbon fiber market: state and prospects], Polimernye materialy, 2011, No 4, pp. 20–24.
13. Patent 9121112, United States of America: Carbon fibers having improved strength and modulus and an associated method and apparatus for preparing same. Publ. 01.09.2015.
14. Kim, S., Syrie – kompozity – uglevolokno [Raw materials – composites – carbon fiber], The Chemical Journal, 2014, October, pp. 64–73. URL: http://tcj.ru/wp-content/uploads/2014/11/2014_10_63-73_PLAST-Syre.pdf (reference date 18/09/2019)
15. Mа, Q.-Sh., Gao, A.-J., Tong, Yu., The densification mechanism of polyacrilonitrile carbon fibers during carbonization, New carbon materials, 2016, V. 31, No 5, pp. 550–554.
16. Valueva, M.I., Gulyaev, I.N., Sidorina, A.I., Rynok rossiiskikh uglerodnykh napolnitelei segodnya: Obzor [Russian carbon filler market today. Overview], Novosti materialovedeniya. Nauka i Tekhnika, 2016, No 4, pp. 77–87.
17. Li, X.-Y., Feng, T., Gao, X.-P., WAXD/SAXS study and 2D fitting (SAXS) of the microstructural evolution of PAN-based carbon fibers during the pre-oxidation and carbonization process, New carbon materials, 2017, No 4, pp. 130–137.
18. Lysenko, A.A., Astashkina, O.V., Rusova, N.V., Tsybuk, I.O., Rynok uglerodnykh volokon k nachalu 2018 goda [The carbon fiber market at the beginning of 2018], Fizika voloknistykh materialov: struktura, svoistva, naukoemkie tekhnologii i materialy (SMARTEX), 2018, No 1-1, pp. 37–39.
19. Husona, M.G., Churcha, J.S., Heterogeneity of carbon fibre, Carbon, 2014, V. 68, pp. 240–249.
20. Aizenshtein, E.M., Otechestvennaya promyshlennost khimicheskikh volokon v 2017 godu [Domestic chemical fiber industry in 2017], Kompozitny mir, 2018, No 3, pp. 26–31.
21. Tyumentsev, V.A., Fazlitdinova, A.G., Vzaimosvyaz rezhimov polucheniya i tonkoi struktury ugleroda volokna [The Interrelation between the production modes and the fine structure of carbon fiber], Zhurnal tekhnicheskoi fiziki, 2016, V. 86, Issue 3, pp. 62–69.
22. Kablov, E.N., Startsev, O.V., Panin, S.V., Vlagoperenos v ugleplastike s destruktirovannoi poverkhnostyu [Moisture transfer in carbon fiber with a degraded surface], Reports of the Academy of Sciences, 2015, V. 461, No 4, pp. 433–436.
23. Lifeng, H., Ping, P., Fan, Y., Study of structure-mechanical heterogeneity of polyacriloni-trile-based carbon fiber monofilament by plasma etching-assisted radius profiling, Carbon, 2017, V. 114, pp. 317–323.
24. Kablov, E.N., Startsev, V.O., Sistemny analiz vliyaniya klimata na mekhanicheskie svoistva polimernykh kompozitsionnykh materialov po dannym otechestvennykh i zarubezhnykh istochnikov (obzor) [System analysis of the influence of climate on the mechanical properties of polymer composite materials according to domestic and foreign sources (review)], Aviatsionnye materialy i tekhnologii, 2018, No 2, pp. 47–58. DOI: 10.18577/2071-9140-2018-0-2-47-58.
25. Kolodyazhny, A.Yu., Sheshin, E.P., Avtoelektronnaya emissiya nekotorykh vidov poliakrilonitrilnykh uglerodnykh volokon [Autoelectronic emission of certain types of polyacrylonitrile carbon fibers], Khimiya i khimicheskaya tekhnologiya, 2015, V. 58, Issue 7, pp. 78–81.
26. Valueva, M.I., Zelenina, I.V., Khaskov, M.A., Gulyaev, A.I., Podgotovka uglerodnogo volokna k naneseniyu interfaznogo pokrytiya dlya kompozitsionnykh materialov s keramicheskoi matritsei [Preparing carbon fiber for interphase coating for ceramic matrix composite materials], Trudy VIAM, 2017, No 1 0 (58), pp. 79–89. URL: http://www.viam-works.ru (reference date 01/03/2019). DOI: 10.18577/2307-6046-2017-0-10-9-9.
27. Nistratov, A.V., Alekseev, S.A., Klushin, V.N., Optimizatsiya rezhima karbonizatsii akrilovykh tekstilnykh otkhodov [Optimization of the mode of carbonization of acrylic textile waste], Uspekhi v khimii i khimicheskoi tekhnologii, 2015, V. 29, No 8, pp. 99–101.
28. Gulyaev, A.I., Shurtakov, S.V., Kolichestvenny analiz mikrostruktury granichnogo sloya volokno – matritsa v ugleplastikakh [Quantitative analysis of the microstructure of the boundary layer “fibermatrix” in CFRP], Trudy VIAM, 2016, No 7 (43), pp. 67–76. URL: http://www.viam-works.ru (reference date 01/03/2019). DOI: 10.18577/2307-6046-2016-0-7-8-8.
29. Kapustin, V.M., Glagoleva, O.F., Fiziko-khimicheskie aspekty formirovaniya neftyanogo koksa (obzor) [Physico-chemical aspects of the formation of petroleum coke (review)], Neftekhimiya, 2016, V. 56, No 1, p. 3.
30. Erasov, V.S., Vizualizatsiya protsessov ispytaniya i eksperimentalnykh dannykh v 3D-prostranstve [Visualization of testing processes and experimental data in 3D space], Aviatsionnye Materialy i Tekhnologii, 2014, No S4, pp. 22–28. DOI: 10.18577/2071-9140-2014-0-s4-22-28.
31. Nasibulin, A.V., Petrov, A.V., Beilina, N.Yu., Vliyanie sposoba vvedeniya nanostrukturiruyushchei dobavki na svoistva kamennougolnogo peka [The influence of the method of introducing nanostructural additives on the properties of coal tar pitch], Uspekhi v khimii i khimicheskoi tekhnologii, 2015, V. 29, No 7, pp. 62–64.
32. Kuznetsov, A.V., Genis A.V., Koval Yu.S., Izmenenie strukturno-mekhanicheskikh svoistv poliakrilonitrilnogo prekursora v protsesse ego preobrazovaniya v uglerodnoe volokno [Changes in the
33. Ostrovsky, V.S., Starichenko, N.S., Izmenenie svoistv kamennougolnykh pekov dobavkami [Changing the properties of coal tar pitch additives], Koks i khimiya, 2018, No 1, pp. 22–31.
34. structural-mechanical properties of a polyacrylonitrile precursor during its conversion to carbon fiber], Voprosy oboronnoi tekhniki: Kompozitsionnye nemetallicheskie materialy v mashinostroenii, 2014, No 4 (175), pp. 18–22.
35. Kuznetsov, P.N., Marakushina, E.N., Buryukin, F.A., Poluchenie alternativnykh pekov iz uglei [Obtaining alternative pitch from coal], Khimiya v interesakh ustoichivogo razvitiya, 2016, V. 24, No 3, pp. 325–333.
36. Perepelkin, K.E., Armiruyushchie volokna i voloknistye polimernye kompozity [Reinforcing fibers and fibrous polymer composites], Moscow: NOT, 2009, p. 380.
37. Ostrovsky, V.S., Starichenko, N.S., Kamennougolnye peki kak svyazuyushchie dlya uglerodnykh materialov [Coal Pitches as Binders for Carbon Materials], Koks i khimiya, 2016, No 4, pp. 30–33.
38. Mikhailin, Yu.A., Konstruktsionnye polimernye kompozitsionnye materialy [Structural polymer composite materials], Moscow: NOT, 2015, 2nd ed.
39. Khokhlova, G.P., Barnakov, Ch.N., Popova, A.N., Rentgenostrukturny analiz uglerodnykh materialov, poluchennykh karbonizatsiei kamennougolnogo peka s grafitovymi dobavkami [X-ray diffraction analysis of carbon materials obtained by carbonization of coal tar pitch with graphite additives], Koks i khimiya, 2016, No 1, pp. 32–39.
40. Morgan, P., Carbon fibers and their composites, USA: CRC Press, 2005.
41. Yuan, G., Li, X., Dong, Zh., The structure and properties of ribbon-shaped carbon fibers with high orientation, Carbon, 2014, V. 68, pp. 426–439.
42. Park, S.-J., Carbon Fibers, Springer, 2015, p. 330.
43. Raznoushkin, A.E., Khaibullin, A.A., Zhirnov, B.S., O vozmozhnosti ispolzovaniya polimerno-pekovykh kompozitsii v kachestve syrya dlya polucheniya uglerodnykh volokon [About the possibility of using polymer-pitch compositions as a raw material for producing carbon fibers], Neftepererabotka i neftekhimiya. Nauchno-tekhnicheskie dostizheniya i peredovoi opyt, 2015, No 4, pp. 27–33.
44. Varshavsky, V.Ya., Uglerodnye volokna [Carbon fibers], Moscow, 2005.
45. Yanga, J., Nakabayashi, K.,et al., Preparation of pitch based carbon fibers using Hyper-coal as a raw material, Carbon, 2016, V. 106, Sept., pp. 28–36.
46. Meleshko, A.I., Polovnikov, S.P., Uglerod, uglerodnye volokna, uglerodnye kompozity [Carbon, carbon fibers, carbon composites], Moscow: SAINS-PRESS, 2007.
47. Li, X.,, Zhu, X., Okuda, K., Preparation of carbon fibers from low-molecular-weight compounds obtained from low-rank coal and biomass by solvent extraction, New carbon materials, 2017, No 2, pp. 41–47.
48. Abramov, O.N., Sidorov, D.V., Apukhtina, T.L., Poluchenie pekovogo uglerodnogo volokna na osnove neftyanogo syrya [Production of pitch carbon fiber on the basis of crude oil], Izvestiya vysshikh uchebnykh zavedenii. Ser.: Khimiya i khimicheskaya tekhnologiya, 2015, V. 58, No 5, pp. 86–89.
49. Kablov, V.F., Keibal, N.A., Bondarenko, S.N., Poluchenie uglerodnykh volokon dlya polimernykh materialov metodom piroliza modifitsirovannykh PVS-volokon [Obtaining carbon fibers for polymeric materials by pyrolysis of modified PVA fibers], Izvestiya Volgogradskogo gosudarstvennogo tekhnicheskogo universiteta, 2017, No 4 (199), pp. 70–75.
50. Vishnevsky, K.O., Karasev, O.I., Prognozirovanie razvitiya novykh materialov s ispolzovaniem metodov Forsaita [Identifying the Future of New Materials with the Use of Foresight Methods], Foresight-Russia, 2010, V. 4, No 2, pp. 58–67.
51. Li, A., Ma, Zh., Song, H., Effect of heat treatment temperature on the microstructure and properties of polyimide-based carbon fibers, New carbon materials, 2014, V. 29, No 6, pp. 461–466.
52. Composite Materials Handbook, V. 3: Polymer Matrix Composites Materials Usage, Design, and Analysis, URL: https://www.library.ucdavis.edu/wp-content/uploads/2017/03/HDBK17-3F.pdf (reference date 01/03/2019).
53. Patent 2612716, Russian Federation. Method of producing carbon fibers from nanotubes. Publ. 13.03.2017.
54. Mukhamedzyanov, A.T., Mukhamedzyanova, A.A., Gimaev, R.N., Galiakhmetov, R.N., Sostoyanie i perspektivy proizvodstva i potrebleniya uglerodnykh volokon iz neftyanykh pekov [The state and prospects of production and consumption of carbon fibers from oil pit], Vestnik Bashkirskogo universiteta, 2015, V. 20, No 4, pp. 1218–1222.
55. Heng, W., Fana, Sh., Yuana, X., Fabrication of carbon fibers from jute fibers by preoxidation and carbonization, Carbon, 2014, V. 70, p. 321.
56. Mikhailin, Yu.A., Voloknistye polimernye kompozitsionnye materialy v tekhnike [Fibrous polymer composite materials in engineering], St Petersburg, 2013.
57. Sazanov, Yu.N., Ispolzovanie lignina dlya proizvodstva uglerodnykh volokon [The use of lignin for the production of carbon fibers], Evraziiskoe nauchnoe obrazovanie, 2017, V. 1, No 1 (23), pp. 94–99.
58. Patent 2679144, Russian Federation: Method for producing viscose-based carbon fiber for surgical treatment of glaucoma. Publ. 06.02.2019.
59. Patent 2012112/108, WIPO: Method for producing a lignin fiber. Publ. 23.08.2012.
60. Gorina, V.A., Cheblakova, E.G., Vliyanie rezhimov aktivatsii na udelnuyu poverkhnost i razvitie mikroporistoi struktury uglerodnykh volokon na osnove viskozy [The effect of activation modes on the specific surface and the development of the microporous structure of viscose-based carbon fibers], Izvestiya vuzov: Poroshkovaya metallurgiya i funktsionalnye pokrytiya, 2015, No 4, pp. 34–39.
61. Patent 9133568, United States of America: Lignin/polyacrylonitrile-containing dopes, fibers, and methods of making same. Publ. 15.09.2015.
62. Patent 2206505, Russian Federation. Carbon fiber based on hydrated cellulose and its grafted copolymers. Publ. 20.06.2003.
63. Efremova, S.V., Korolev, Yu.M., Sukharnikov, Yu.I., Strukturnye prevrashcheniya uglerodnykh materialov v protsesse polucheniya iz rastitelnogo syrya [Structural transformations of carbon materials in the process of obtaining from plant materials], Khimiya tverdogo topliva, 2016, No 3, pp. 14–19.
64. Drobyshev, V.M., Lyashenko, S.E., Soboleva, I.V., Izuchenie zavisimosti svoistv uglerodnykh voloknistykh adsorbentov v zavisimosti ot uslovii ikh polucheniya [The study of the dependence of the properties of carbon fiber adsorbents depending on the conditions for their preparation], Uspekhi v khimii i khimicheskoi tekhnologii, 2013, V. 27, No 1, pp. 102–110.
65. Kuznetsov, B.N., Chesnokov, N.V., Poristye uglerodnye materialy, poluchennye khimicheskoi aktivatsiei drevesiny breezy [Porous carbon materials obtained by chemical activation of birch wood], Khimiya tverdogo topliva, 2016, No 1, p. 25.
66. Patent 1819852, European Patent Office: Method of obtaining yarns or fiber sheets of carbon from a cellulose precursor. Publ. 22.08.2007.
67. Mikova, N.M., Ivanov, I.P., Chesnokov, N.V., Svoistva poristykh uglerodnykh materialov, poluchennykh shchelochnoi aktivatsiei termicheski modifitsirovannoi drevesiny osiny [Properties of porous carbon materials obtained by alkaline activation of thermally modified aspen wood], Zhurnal Sibirskogo federalnogo universiteta. Ser.: Khimiya, 2015, V. 8, No 1, pp. 78–85.
68. Patent 2258773, Russian Federation: Method of obtaining carbon fiber material. Publ. 20.08.2005.
69. Golova, L.K., Novoe tsellyuloznoe volokno liotsell [New cellulose fiber lyocell], Ros. khim, zhurnal, 2002, V. 46, No 1, pp. 49–57.
70. Patent 2429316, Russian Federation: Method for continuous production of carbon fiber from hydrated cellulose in the form of a unidirectional tow. Publ. 20.09.2011.
71. Patent 2490378, Russian Federation: Method of obtaining carbon fiber material. Publ. 20.08.2013.
72. Patent 2577578, Russian Federation: Method of obtaining carbon fiber material. Publ. 20.03.2016.
73. Patent 2596752, Russian Federation: Method of obtaining carbon fiber materials. Publ. 10.09.2016.
74. Patent 2671709, Russian Federation: Method of producing carbon fiber materials from hydrated cellulose fibers. Publ. 06.11.2018.
75. Patent 2679265, Russian Federation: Method of finishing lyocellulose hydrated cellulose fiber upon receipt of the precursor of carbon fiber material. Publ. 29.05.2018.
76. Patent 2642561, Russian Federation: Method of selection assessment of hydrated cellulose fibers as a precursor in the production of carbon fibers. Publ. 25.01.2018.
77. Patent 10189985, United States of America: Polyacrylonitrile (PAN) polymers with low polydispersity index (PDI) and carbon fibers made therefrom. Publ. 29.01.2019.
78. Patent 8906339, United States of America: High modulus graphitized carbon fiber and method for fabricating the same. Publ. 09.12.2014.
79. Patent 9109305, United States of America: Preparation method for hollow carbon fiber. Publ. 18.08.2015.
80. Patent 9476147, United States of America: Gel spinning process for producing a pan-based precursor fiber. Publ. 25.10.2016.
81. Patent 2535797, Russian Federation: Method of oxidative stabilization of polyacrylonitrile fibers filled with carbon nanoparticles. Publ. 20.12.2014.
82. Patent 2013121957, Russian Federation: Method for oxidative stabilization of polyacrylonitrile fibers filled with carbon nanotubes. Publ. 10.12.2014.
83. Zhiteneva, D.A., Lysenko, A.A., Novoe v tekhnologii okislitelnoi stabilizatsii poliakrilo-nitrilnykh volokon [New in the technology of oxidative stabilization of polyacryl-nitrile fibers], Dizain. Materialy. Tekhnologiya. 2015, V. 5, No 40, pp. 19–22.
84. Skvortsov, I.Yu., Berkovich, A.K., Makarov, I.S., Uglerodnye volokna na osnove poliakrilo-nitrila s dobavkami nanovolokon oksida alyuminiya [Carbon fibers based on polyacryl-nitrile with the addition of alumina nanofibres], Fizika voloknistykh materialov: struktura, svoistva, naukoemkie tekhnologii i materialy (SMARTEX), 2016, V. 1, No 1, pp. 116–120.
85. Patent 9409337, United States of America: Polyacrylonitrile/cellulose nano-structure fibers. Publ. 09.08.2016.
86. Patent 9121112, United States of America: Carbon fibers having improved strength and modulus and an associated method and apparatus for preparing same. Publ. 01.09.2015.
87. Mа, Q.-Sh., Gao, A.-J., Tong, Yu., The densification mechanism of polyacrilonitrile carbon fibers during carbonization, New carbon materials, 2016, V. 31, No 5, pp. 550–554.
88. Li, X.-Y., Feng, T., Gao, X.-P., WAXD/SAXS study and 2D fitting (SAXS) of the microstructural evolution of PAN-based carbon fibers during the pre-oxidation and carbonization process, New carbon materials, 2017, No 4, pp. 130–137.
89. Husona, M.G., Churcha, J.S., Heterogeneity of carbon fibre, Carbon, 2014, V. 68, pp. 240–249.
90. Tyumentsev, V.A., Fazlitdinova, A.G., Vzaimosvyaz rezhimov polucheniya i tonkoi struktury ugleroda volokna [The Interrelation between the production modes and the fine structure of carbon fiber], Zhurnal tekhnicheskoi fiziki, 2016, V. 86, Issue 3, pp. 62–69.
91. Lifeng, H., Ping, P., Fan, Y., Study of structure-mechanical heterogeneity of polyacriloni-trile-based carbon fiber monofilament by plasma etching-assisted radius profiling, Carbon, 2017, V. 114, pp. 317–323.
92. Kolodyazhny, A.Yu., Sheshin, E.P., Avtoelektronnaya emissiya nekotorykh vidov poliakrilonitrilnykh uglerodnykh volokon [Autoelectronic emission of certain types of polyacrylonitrile carbon fibers], Khimiya i khimicheskaya tekhnologiya, 2015, V. 58, Issue 7, pp. 78–81.
93. Nistratov, A.V., Alekseev, S.A., Klushin, V.N., Optimizatsiya rezhima karbonizatsii akrilovykh tekstilnykh otkhodov [Optimization of the mode of carbonization of acrylic textile waste], Uspekhi v khimii i khimicheskoi tekhnologii, 2015, V. 29, No 8, pp. 99–101.
94. Kapustin, V.M., Glagoleva, O.F., Fiziko-khimicheskie aspekty formirovaniya neftyanogo koksa (obzor) [Physico-chemical aspects of the formation of petroleum coke (review)], Neftekhimiya, 2016, V. 56, No 1, p. 3.
95. Nasibulin, A.V., Petrov, A.V., Beilina, N.Yu., Vliyanie sposoba vvedeniya nanostrukturiruyushchei dobavki na svoistva kamennougolnogo peka [The influence of the method of introducing nanostructural additives on the properties of coal tar pitch], Uspekhi v khimii i khimicheskoi tekhnologii, 2015, V. 29, No 7, pp. 62–64.
96. Ostrovsky, V.S., Starichenko, N.S., Izmenenie svoistv kamennougolnykh pekov dobavkami [Changing the properties of coal tar pitch additives], Koks i khimiya, 2018, No 1, pp. 22–31.
97. Kuznetsov, P.N., Marakushina, E.N., Buryukin, F.A., Poluchenie alternativnykh pekov iz uglei [Obtaining alternative pitch from coal], Khimiya v interesakh ustoichivogo razvitiya, 2016, V. 24, No 3, pp. 325–333.
98. Ostrovsky, V.S., Starichenko, N.S., Kamennougolnye peki kak svyazuyushchie dlya uglerodnykh materialov [Coal Pitches as Binders for Carbon Materials], Koks i khimiya, 2016, No 4, pp. 30–33.
99. Khokhlova, G.P., Barnakov, Ch.N., Popova, A.N., Rentgenostrukturny analiz uglerodnykh materialov, poluchennykh karbonizatsiei kamennougolnogo peka s grafitovymi dobavkami [X-ray diffraction analysis of carbon materials obtained by carbonization of coal tar pitch with graphite additives], Koks i khimiya, 2016, No 1, pp. 32–39.
100. Yuan, G., Li, X., Dong, Zh., The structure and properties of ribbon-shaped carbon fibers with high orientation, Carbon, 2014, V. 68, pp. 426–439.
101. Raznoushkin, A.E., Khaibullin, A.A., Zhirnov, B.S., O vozmozhnosti ispolzovaniya polimerno-pekovykh kompozitsii v kachestve syrya dlya polucheniya uglerodnykh volokon [About the possibility of using polymer-pitch compositions as a raw material for producing carbon fibers], Neftepererabotka i neftekhimiya. Nauchno-tekhnicheskie dostizheniya i peredovoi opyt, 2015, No 4, pp. 27–33.
102. Yanga, J., Nakabayashi, K.,et al., Preparation of pitch based carbon fibers using Hyper-coal as a raw material, Carbon, 2016, V. 106, Sept., pp. 28–36.
103. Li, X.,, Zhu, X., Okuda, K., Preparation of carbon fibers from low-molecular-weight compounds obtained from low-rank coal and biomass by solvent extraction, New carbon materials, 2017, No 2, pp. 41–47.
104. Kablov, V.F., Keibal, N.A., Bondarenko, S.N., Poluchenie uglerodnykh volokon dlya polimernykh materialov metodom piroliza modifitsirovannykh PVS-volokon [Obtaining carbon fibers for polymeric materials by pyrolysis of modified PVA fibers], Izvestiya Volgogradskogo gosudarstvennogo tekhnicheskogo universiteta, 2017, No 4 (199), pp. 70–75.
105. Li, A., Ma, Zh., Song, H., Effect of heat treatment temperature on the microstructure and properties of polyimide-based carbon fibers, New carbon materials, 2014, V. 29, No 6, pp. 461–466.
106. Patent 2612716, Russian Federation. Method of producing carbon fibers from nanotubes. Publ. 13.03.2017.
107. Heng, W., Fana, Sh., Yuana, X., Fabrication of carbon fibers from jute fibers by preoxidation and carbonization, Carbon, 2014, V. 70, p. 321.
108. Sazanov, Yu.N., Ispolzovanie lignina dlya proizvodstva uglerodnykh volokon [The use of lignin for the production of carbon fibers], Evraziiskoe nauchnoe obrazovanie, 2017, V. 1, No 1 (23), pp. 94–99.
109. Patent 2012112/108, WIPO: Method for producing a lignin fiber. Publ. 23.08.2012.
110. Patent 9133568, United States of America: Lignin/polyacrylonitrile-containing dopes, fibers, and methods of making same. Publ. 15.09.2015.
111. Efremova, S.V., Korolev, Yu.M., Sukharnikov, Yu.I., Strukturnye prevrashcheniya uglerodnykh materialov v protsesse polucheniya iz rastitelnogo syrya [Structural transformations of carbon materials in the process of obtaining from plant materials], Khimiya tverdogo topliva, 2016, No 3, pp. 14–19.
112. Kuznetsov, B.N., Chesnokov, N.V., Poristye uglerodnye materialy, poluchennye khimicheskoi aktivatsiei drevesiny breezy [Porous carbon materials obtained by chemical activation of birch wood], Khimiya tverdogo topliva, 2016, No 1, p. 25.
113. Mikova, N.M., Ivanov, I.P., Chesnokov, N.V., Svoistva poristykh uglerodnykh materialov, poluchennykh shchelochnoi aktivatsiei termicheski modifitsirovannoi drevesiny osiny [Properties of porous carbon materials obtained by alkaline activation of thermally modified aspen wood], Zhurnal Sibirskogo federalnogo universiteta. Ser.: Khimiya, 2015, V. 8, No 1, pp. 78–85.
114. Golova, L.K., Novoe tsellyuloznoe volokno liotsell [New cellulose fiber lyocell], Ros. khim, zhurnal, 2002, V. 46, No 1, pp. 49–57.
Review
For citations:
Valueva M.I. Progress, аchievements and prospects in the field of raw materials for carbon fibers (Review). Voprosy Materialovedeniya. 2019;(3(99)):99-115. (In Russ.) https://doi.org/10.22349/1994-6716-2019-99-3-99-115