Preview

Voprosy Materialovedeniya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Ultra high molecular weight polyethylene (UHMWPE) as an advanced component in polymeric composite materials (Review)

https://doi.org/10.22349/1994-6716-2019-99-3-116-127

Abstract

The article presents review of Russian and foreign scientific and technical literature data dedicated to ultra-high molecular weight polyethylene (UHMWPE) as a component in polymer composites. Examples of the practical use of UHMWPE as a reinforcing fibers and polymer matrix are considered. Some physical and mechanical characteristics of the UHMWPE-based products widely used in various industries are given; the necessity to treat UHMWPE fibers to produce composite materials with a high level of properties is described.

About the Authors

S. S. Malakhovsky
Federal State Unitary Enterprise “All-Russian Scientific Research Institute of Aviation Materials” (FSUE VIAM)
Russian Federation
17 Radio St, 105005 Moscow, Russian Federation



M. I. Valueva
Federal State Unitary Enterprise “All-Russian Scientific Research Institute of Aviation Materials” (FSUE VIAM)
Russian Federation
Cand Sc. (Eng)

17 Radio St, 105005 Moscow, Russian Federation



E. S. Imametdinov
Federal State Unitary Enterprise “All-Russian Scientific Research Institute of Aviation Materials” (FSUE VIAM)
Russian Federation
17 Radio St, 105005 Moscow, Russian Federation



References

1. Kablov, E.N., Tendentsii i orientiry innovatsionnogo razvitiya Rossii [Trends and marks of innovate development in Russia], Collected Scientific Information Materials, Moscow: VIAM, 2015, V. 3.

2. Raskutin, A.E., Strategiya razvitiya polimernykh kompozitsionnykh materialov [Development strategy for polymer composite materials], Aviatsionnye materialy i tekhnologii, 2017, No S, pp. 344–348. DOI: 10.18577/2071-9140-2017-0-S-344-348.

3. Grishina, O.I., Kochetov, V.N., Shavnev, A.A., Serpova, V.M., Aspekty primeneniya vysokoprochnykh i vysokomodulnykh voloknistykh metallicheskikh kompozitsionnykh materialov aviatsionnogo naznacheniya (obzor) [Aspects of the use of high-strength and high-modulus fibrous metallic composite materials for aviation purposes (review)], Trudy VIAM, 2014, No 10, article 05, URL: http://www.viam-works.ru (reference date 31/05/2019). DOI: 10.18577/2307-6046-2014-0-10-5-5.

4. Doriomedov, M.S., Daskovsky, M.I., Skripachev, S.Yu., Shein, E.A., Polimernye kompozitsionnye materialy v zheleznodorozhnom transporte Rossii (obzor) [Polymer composite materials in the railway transport of Russia (review)], Trudy VIAM, 2016, No 7, pp. 113–118. URL: http://www.viam-works.ru (reference date 31/05/2019). DOI: 10.18577/2307-6046-2016-0-7-12-12.

5. Timoshkov, P.N., Khrulkov, A.V., Yazvenko, L.N., Kompozitsionnye materialy v avtomobilnoi promyshlennosti (obzor) [Composite materials in the automotive industry (review)], Trudy VIAM, 2017, No 6, pp. 61–68. URL: http://www.viam-works.ru (reference date 31/05/2019). DOI: 10.18577/2307-6046-2017-0-6-7-7.

6. Kablov, E.N., Kompozity: segodnya i zavtra [Composites: today and tomorrow], Metally Evrazii, 2015, No 1, pp. 36–39.

7. Kablov, E.N., Startsev, V.O., Sistemny analiz vliyaniya klimata na mekhanicheskie svoistva polimernykh kompozitsionnykh materialov po dannym otechestvennykh i zarubezhnykh istochnikov (obzor) [System analysis of the influence of climate on the mechanical properties of polymer composite materials according to domestic and foreign sources (review)], Aviatsionnye materialy i tekhnologii, 2018, No 2, pp. 47–58. DOI: 10.18577/2071-9140-2018-0-2-47-58.

8. Kablov, E.N., Innovatsionnye razrabotki VIAM po realizatsii “Strategicheskikh napravlenii razvitiya materialov i tekhnologii ikh pererabotki na period do 2030 goda” [Innovate developments of the All-Russian Scientific Research Institute of Aviation Materials within the project “Strategic development of materials and technologies of their recycling up to 2030”], Aviatsionnye Materialy i Tekhnologii, 2015, No 1, pp. 3–33, DOI: 10.18577/2071-9140-2015-0-1-3-33.

9. Selyutin, G.E., Gavrilov, Yu.Yu., Voskresenskaya, E.N., Kompozitsionnye materialy na osnove sverkhvysokomolekulyarnogo polietilena: svoistva, perspektivy ispolzovaniya [Composite materials based on ultrahigh molecular weight polyethylene: properties, prospects of use], Khimiya v interesakh ustoichivogo razvitiya, 2010, No 3, pp. 375–388.

10. Galibeev, S.S., Khairullin, R.Z., Arkhireev, V.P., Sverkhvysokomolekuliarny polietilen. Tendentsii i perspektivy [Ultrahigh molecular weight polyethylene. Trends and prospects], Vestnik Kazanskogo tekhnologicheskogo universiteta, 2008, No 2, pp. 50–55.

11. Werff, H., Heisserer, U., High performance ballistic fibers: Ultra-High Molecular Weight Polyethylene (UHMWPE). URL: https://www.researchgate.net/publication/292147035 (reference date 31/05/2019).

12. Deitzel, J.M., McDaniel, P., Gillespie, Jr., J.W., High performance polyethylene fibers, Structure and Properties of High-Performance Fibers, Woodheat Publishing, 2017, pp. 167–185.

13. Gogoleva, O.V., Shilko, I.S., Issledovanie vliyaniya uglerodnykh volokon na svoistva i strukturu kompozitov na osnove SVMPE [Study of the effect of carbon fibers on the properties and structure of composites based on UHMWPE], POLIKOMTRIB-2017 Proceedings, p. 206.

14. Chan, J., Hu, J., Wang, J., An amidoximated-UHMWPE fiber for selective and high efficient removal of Uranyl and Thorium from acid aqueous solution, Advances in Chemical Engineering and Science, 2017, No 7, pp. 45–59.

15. Technical Specifications of UMT Carbon Fiber, URL: https://umatex.com/production/fiber/ (reference date 30/05/2019).

16. DuPont Kevlar Fiber, URL: http://www.twistcom.ru/stati/structura.html (reference date 31/05/2019).

17. Belyaeva, E.A., Kosolapov, A.F., Shatsky, S.V., Gibridnye kompozity na osnove voloknistykh napolnitelei iz sverkhvysokomolekulyarnogo polietilena i steklonapolnitelei [Hybrid composites based on fiber fillers from ultrahigh molecular weight polyethylene and glass fillers], Uspekhi v khimii i khimicheskoi tekhnologii, 2015, No 10, pp. 11–13.

18. SintyFiber product catalog, URL: http://www.sintyfiber.com/pshow1634.html (reference date 31/05/2019).

19. Volkova, A.V., Rynki krupnotonnazhnykh polimerov [Large-capacity polymer markets], National Research University Higher School of Economics. Development Center, 2017, URL:

20. https://dcenter.hse.ru/data/2018/02/04/1163443543 (reference date 31/05/2019).

21. Ryazantseva, S.I., Ilyushina, S.V., Bugaeva, A.I., Sravnitelnaya kharakteristika svoistv modifitsirovannogo SVMPE [Comparative characteristics of the properties of modified UHMWPE], Problemy i perspektivy razvitiya Rossii: Molodezhny vzglyad v budushchee (ML-31), 2018, V. 4, pp. 202–204.

22. Panin, S.V., Panin, V.E., Kornienko, L.A., Puvadin, T., Piriyaon, S., Shilko, S.V., Modifitsirovanie sverkhvysokomolekulyarnogo polietilena (SVMPE) nanonapolnitelyami dlya polucheniya antifriktsionnykh kompozitov [Modification of ultrahigh molecular weight polyethylene (UHMWPE) by nanofillers to obtain antifriction composites], Khimiya i khimicheskaya tekhnologiya, 2011, V. 54, Issue 7, pp. 102–106.

23. Marissen, R., Design with Ultra Strong Polyethylene Fibers, Materials Science and Applications, 2011, V. 2, pp. 319–330.

24. Sergeeva, E.A., Kostina, K.D., Sposoby polucheniya kompozitov i izdelii na osnove tkani iz SVMPE i reziny dlya proizvodstva toplivnykh bakov [Methods for producing composites and products based on fabric from UHMWPE and rubber for the production of fuel tanks], Vestnik Kazanskogo tekhnologicheskogo universiteta, 2014, V. 17, No 5, pp. 101–105.

25. Khatiwada, S., Armada Carlos, A., Barrera Enrique, V., Hypervelocity impact experiments on epoxy/ultra-high molecular weight polyethylene fiber composites reinforced with singlewalled carbon nanotubes, Procedia Engineering, 2013, No 58, pp. 4–10.

26. Churkov, D.I., Zherebtsov, D.D., Nematulloev, S.G., Issledovanie struktury i svoistv samoarmirovannykh kompozitsionnykh materialov na osnove volokon iz sverkhvysokomolekulyarnogo polietilena [Research of the structure and properties of self-reinforced composite materials based on fibers of ultrahigh molecular weight polyethylene], Tekhnicheskie nauki, 2017, No 11, pp. 145–150.

27. Korneeva, N.V., Kudinov, V.V., Krylov, I.K., Novye materialy, armirovannye SVMPE-voloknami [New materials reinforced with UHMWPE fibers], Khimicheskaya fizika vchera, segodnya, zavtra: Materials of the jubilee scientific conference dedicated to the 80th anniversary of the Institute of Chemical Physics RAS, 2011, pp. 68–69.

28. Valueva, M.I., Zhelezina, G.F., Gulyaev, I.N., Polimernye kompozitsionnye materialy povyshennoi iznosostoikosti na osnove sverkhvysokomolekulyarnogo polietilena [Polymer composite materials of enhanced wear resistance based on ultrahigh molecular weight polyethylene], Vse materialy: Encyclopedic Reference Book, 2017, No 6, pp. 23–29.

29. Belyaeva, E.A., Kosolapov, A.F., Osipchik, V.S., Shatskaya, T.E., Kuznetsov, A.A., Kladovshchikova, O.I., Gilman, A.B., Galitsyn, V.P., Kompozitsionny udaroprochny material konstruktsionnogo naznacheniya na osnove voloknistykh napolnitelei iz sverkhvysokomolekulyarnogo polietilena otechestvennogo proizvodstva [Composite impactresistant structural material on the basis of fibrous fillers from ultrahigh-molecular polyethylene of domestic production], Plasticheskie massy, 2014, No 9–10, pp. 41–44.

30. Lin, S.P., Han, J.L., Yeh, J.T., et al., Composites of UHMWPE fiber reinforced PU/epoxy grafted interpenetrating polymer networks, European Poymer Journal, 2007, V. 43, Issue 3, pp. 996–1008.

31. Belyaeva, E.A., Kosolapov, A.F., Shatsky, S.V., Vysokotekhnologichnye protsessy kak instrument sozdaniya konkurentosposobnykh kompozitsionnykh materialov na osnove voloknistykh napolnitelei iz verkhvysokomolekulyarnogo polietilena (SVMPE) otechestvennogo proizvodstva [High-tech processes as a tool for creating competitive composite materials based on fiber fillers from ultrahigh molecular weight polyethylene (UHMWPE) of domestic production], Polzynovsky Vestnik, 2016, No 1, pp. 112–118.

32. Bouwmeester, J.G.H., Marissen, R., Bergsma, O.K., Carbon/Dyneema® intralaminar hybrids: new strategy to increase impact resistance or decrease mass of carbon fiber composites, 26th International congress of the aeronautical sciences, 2008, pp. 1–6.

33. Long, H.N., Torsten, R.L., Shannon R., Numerical Modelling of Ultra-High Molecular Weight Polyethylene Composite Under Impact Loading, Procedia Engineering, 2015, V. 103, pp. 436–443.

34. Attwood, J.P., Fleck, N.A., Wadley, H.N.G., The compressive response of ultra-high molecular weight polyethylene fibres and composites, International Journal of Solids and Structures, 2015, V. 71, pp. 141–155.

35. Guangting Han, Xiaowei Tao, Xianbo Li, Study of the Mechanical Properties of Ultra-High Molecular Weight Polyethylene Fiber Rope, Journal of Engineered Fibers and Fabrics, 2016, V. 11, pp. 9–16.

36. Singh, Sh., Gautam, Ya.R., Singh, A.P., Verma, M.K., Application of UHMWPE Fiber Based Composite Material, International Journal of Research in Advent Technology, 2018, V. 6, No 7, pp. 1768–1771.

37. Ultrahigh molecular weight polyethylene (UHMWPE) – material for extreme operating conditions. URL: http://catalysis.ru/block/index.php?ID=3&SECTION_ID=1487 (reference date 31/05/2019).

38. Zakharov, V.A., Mikenas, T.B., Nikitin, V.E., Mozgunova, N.V., Patent RU 2 346 006, Russian Federation: Catalyst and method of obtaining ultra-high molecular polyethylene using this catalyst. Publ. 10.02.2009, Bull. 4.

39. UHMWPE high-strength yarn. URL: http://www.rt-chemcomposite.ru/produktsiya/1099/ (reference date 31/05/2019).

40. Polynit Textiles. URL: http://polinit-textile.ru/pdf/spravka.pdf (reference date 31/05/2019).

41. UHMWPE fibers and products made of them. URL: http://www.formoplast-spb.ru/volokna-svmp/ (reference date 31/05/2019).

42. Baronin, G.S., Buznik, V.M., Khudyakov, V.V., Polimernye kompozitsionnye materialy na osnove sverkhvysokomolekulyarnogo polietilena, modifitsirovannogo nanodobavkami [Polymeric composite materials based on ultrahigh molecular weight polyethylene modified with nanoadditives], Vestnik Tambovskogo universiteta, 2016, V. 21, Issue 3, pp. 886–888.

43. Kupriyanova, E.V., Krainov, A.S., Osnovnye napravleniya v razrabotke takticheskikh broneshlemov [The main directions in the development of tactical armor], Voprosy oboronnoi tekhniki. Kompozitsionnye nemetallicheskie materialy v mashinostroenii. 2018, No 2 (189), pp. 69–72.

44. Lдssig, T., Nguyen, L., May, M., Riedel, W., Heisserer, U., Van der Werff, H., Hiermaier, S., A non-linear orthotropic hydrocode model for ultra-high molecular weight polyethylene in impact simulations, International Journal of Impact Engineering, 2015, V. 75, pp. 110–122.

45. Okhlopkova, A.A., Okhlopkova, T.A., Borisova, R.V., Upravlenie protsessami strukturoobrazovaniya v polimernykh kompozitsionnykh materialakh na osnove SVMPE [Management of structure formation processes in polymer composite materials based on UHMWPE], Nauka i obrazovanie, 2015, No 2, pp. 85–90.


Review

For citations:


Malakhovsky S.S., Valueva M.I., Imametdinov E.S. Ultra high molecular weight polyethylene (UHMWPE) as an advanced component in polymeric composite materials (Review). Voprosy Materialovedeniya. 2019;(3(99)):116-127. (In Russ.) https://doi.org/10.22349/1994-6716-2019-99-3-116-127

Views: 1267


ISSN 1994-6716 (Print)