Preview

Вопросы материаловедения

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

Эволюция структурно-фазового состояния оболочек твэлов из сплава Э110 под действием повышенных температур и напряжений

https://doi.org/10.22349/1994-6716-2019-99-3-157-174

Аннотация

Приведены результаты микроструктурных исследований фрагментов оболочек тепловыделяющих элементов из сплава Э110 на основе губчатого и электролитического циркония после эксплуатации в составе тепловыделяющих сборок ВВЭР-1000 с последующими испытаниями на ползучесть с приложением аксиальных нагрузок. Показано, что в процессе испытаний на ползучесть в исследованных образцах не происходит изменений химического состава, среднего размера и объемной плотности вторых фаз, в том числе радиационно-индуцированных. Установлено, что при испытаниях на ползучесть происходит отжиг дислокационных петель – увеличение их среднего размера с одновременным снижением объемной плотности. Показано, что образцы оболочек тепловыделяющих элементов из сплава на основе электролитического циркония в целом демонстрируют большую стойкость к ползучести по сравнению с образцами из сплава на основе губчатого циркония, что, по-видимому, связано с большей плотностью глобулярных выделений β-Nb в состоянии после облучения образцов на основе электролитического циркония.

Об авторах

Б. А. Гурович
Национальный исследовательский центр «Курчатовский институт»
Россия
д-р техн. наук

123182, Москва, пл. Академика Курчатова, 1


А. С. Фролов
Национальный исследовательский центр «Курчатовский институт»
Россия
канд. техн. наук

123182, Москва, пл. Академика Курчатова, 1

 


Е. А. Кулешова
Национальный исследовательский центр «Курчатовский институт», Национальный исследовательский ядерный университет «Московский инженерно-физический институт»
Россия
д-р техн. наук

123182, Москва, пл. Академика Курчатова, 1 115409, Москва, Каширское шоссе, 31


Д. А. Мальцев
Национальный исследовательский центр «Курчатовский институт»
Россия
канд. техн. наук

123182, Москва, пл. Академика Курчатова, 1


Д. В. Сафонов
Национальный исследовательский центр «Курчатовский институт»
Россия
123182, Москва, пл. Академика Курчатова, 1


В. Н. Кочкин
Национальный исследовательский центр «Курчатовский институт»
Россия

канд. техн. наук

123182, Москва, пл. Академика Курчатова, 1



А. А. Решетников
Национальный исследовательский центр «Курчатовский институт»
Россия
123182, Москва, пл. Академика Курчатова, 1


Список литературы

1. Desgranges L., Ferroud-Plattet M.P., Alloncle R., Aubrun I., Untrau J.M., Lhuillery P. Behavior of a defective nuclear fuel rod in dry storage conditions studied with a new experimental setup // Nucl. Technol. 2008. – V. 163, N 2. – P. 252–260.

2. Romanato L.S. Advantages of Dry Hardened Cask Storage Over Wet Storage for Spent Nuclear Fuel // Int. Nucl. Atl. Conf. INA 2011 Belo Horizonte, MG, Brazil, Oct. 24–28, 2011, Assoc. Bras. Energ. Nucl. ABEN, 2011.

3. Won J. J., Kim M. S., Kim K. T. Heat-up and cool-down temperature-dependent hydride reorientation behaviors in zirconium alloy cladding tubes // Nucl. Eng. Technol. Korean Nuclear Society. – 2014. – V. 46, N 5. – P. 681–688.

4. Yang W. J. S., Tucker R.P., Cheng B., Ada mson R.B. Precipitates in zircaloy: Identification and the effects of irradiation and thermal treatment // J. Nucl. Mater. – 1986. – V. 138, N 2–3. – P. 185–195.

5. Griffiths M., Gilbert R.W., Carpenter G.J.C. Phase instability, decomposition and redistribution of intermetallic precipitates in Zircaloy-2 and -4 during neutron irradiation // J. Nucl. Mater. – 1987. – V. 150, N 1. – P. 53–66.

6. Ribis J., Do riot S., On i mu s F. Shape, orientation relationships and interface structure of beta-Nb nano-particles in neutron irradiated zirconium alloy // J. Nucl. Mater. – 2018, V. 511. – P. 18–29.

7. Doriot S., Gilbon D., Bechade J.-L., Mathon M.-H., Legras L., Mardon J.-P. Microstructural Stability of M5TM Alloy Irradiated up to High Neutron Fluences // J. ASTM Int. – 2005. – V. 2, N 7. – P. 12332.

8. Гурович Б. А., Фролов А. С., Кулешова Е. А., Мальцев Д. А., Сафонов Д. В., Кочкин В. Н., Алексеева Е. В., Степанов Н. В. Деградация материалов оболочек твэлов на основе циркония в условиях эксплуатации реакторов типа ВВЭР // Вопросы материаловедения. – 2018. – № 3(95). – P. 191–205.

9. Novikov V. V., Markelov V. A., Tselishchev A. V., Konkov V. F., Sinelnikov L. P., Panchenko V. L. Structure-phase changes and corrosion behavior of e110 and e635 claddings of fuels in water cooled reactors // J. Nucl. Sci. Technol. – 2006. – V. 43, N 9. – P. 991–997.

10. Novikov V., Markelov V., Gusev A., Malgin A., Kabanov A., Pimenov Y. Some Results on the Properties Investigations of Zirconium Alloys for WWER-1000 Fuel Cladding // Int. Conf. WWER Fuel Performance, Model. Exp. Support., 17–24 Sep. 2011, Helena Resort (Bulgaria). – P. 459–467.

11. Markelov V. A. On correlation of composition, structural-phase state, and properties of E635 zirconium alloy // Inorg. Mater. Appl. Res. – 2010. – V. 1, N 3. – P. 245–253.

12. Gurovich B. A., Frolov A. S., Kuleshova E. A., Maltsev D. A., Safonov D. V., Alekseeva E. V. TEM-studies of the dislocation loops and niobium-based precipitates in E110 alloy after operation in VVER-type reactor conditions // Mater. Charact. – 2019. – V. 150. – P. 22–30.

13. Novikov V. V., Shishov V. N., Shevyakov A. Y., Voevodin V. N., Borodin O. V., Bryk V. V., Vasilenko R. L. Investigation of the microstructure of zirconium alloys irradiated by zirconium ions in an accelerator // At. Energy. – 2014. – V. 115, N 5. – P. 307–312.

14. Shishov V. N., Barberis P., Dean S. W. The Evolution of Microstructure and Deformation Stability in Zr–Nb–(Sn,Fe) Alloys Under Neutron Irradiation // J. ASTM Int. – 2010. – V. 7, N 7. – P. 103005.

15. Shishov V., Peregud M., Nikulina A., Pimenov Y., Kobylyansky G., Novoselov A., Ostrovsky Z., Obukhov A. Influence of Structure Phase State of Nb Containing Zr Alloys on Irradiation-Induced Growth // J. ASTM Int. – 2005. – V. 2, N 8. – P. 12431.

16. Kirбly M., Antуk D.M., Horvбth L., Hуzer Z. Evaluation of axial and tangential ultimate tensile strength of zirconium cladding tubes // Nucl. Eng. Technol. – 2018. – V. 50, N 3. – P. 425–431.

17. Fedotov P. V, Loshmanov L. P., Kostyukhina A. V. Recovery of the mechanical properties of an irradiated E110 alloy // Russ. Metall. – 2014. – V. 2014, N 9. – P. 762–767.

18. Malgin A. G., Markelov V. A., Novikov V. V., Shelepov I. A., Donnikov V. E., Latunin V. I., Linhart S., Belac J., Vrtilkova V., Krejci J. Research of high-temperature oxidation behavior of E110 opt and E110М sponge based zirconium alloys // Top Fuel. A0239. – 2018. – V. 110. – P. 1–10.

19. Walters L., Douglas S. R., Griffiths M. Equivalent Radiation Damage in Zirconium Irradiated in Various Reactors // Zircon. Nucl. Ind. 18th Int. Symp. / Ed. R.J. Comstock, A.T. Motta. – 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2018. – P. 676–690.

20. Синдо Д., Оикава Т. Аналитическая просвечивающая электронная микроскопия. – М.: Техносфера, 2006. – 256 с.

21. Malis T., Cheng S.C., Egerton R.F. EELS log-ratio technique for specimen-thickness measurement in the TEM // J. Electron Microsc. Tech. – 1988. – V. 8, N 2. – P. 193–200.

22. Yang Y. Y., Egerton R. F. Tests of two alternative methods for measuring specimen thickness in a transmission electron microscope // Micron. – 1995. – V. 26, N 1. – P. 1–5.

23. Zhang H.-R., Egerton R. F., Malac M. Local thickness measurement through scattering contrast and electron energy-loss spectroscopy. // Micron. Elsevier Ltd. – 2012. – V. 43, N 1. – P. 8–15.

24. Egerton R. F., Cheng S. C. Measurement of local thickness by electron energy-loss spectroscopy // Ultramicroscopy. – 1987. – V. 21, N 3. – P. 231–244.

25. Iakoubovskii K., Mitsuishi K., Nakayama Y., Furuya K. Thickness measurements with electron energy loss spectroscopy. // Microsc. Res. Tech. – 2008. – V. 71, N 8. – P. 626–631.

26. Williams D. B., Carter C. B. Transmission Electron Microscopy: A Textbook for Materials. 2nd ed. – Springer, 2009. – 832 p.

27. Салтыков С. А. Стереометрическая металлография. – М.: Металлургия, 1976. – 271. c.

28. Bell D. C., Garratt-Reed A. J. Energy Dispersive X-ray Analysis in the Electron Microscope. – Oxford: Taylor & Francis, 2003. – 160 p.

29. Williams D. B., Carter C. B. Transmission Electron Microscopy: A Textbook for Materials Science. New York: Springer. 2009. 760 p. // Mater. Sci. Springer. – 2009. – V. 1–4. – P. 760.

30. Transmission Electron Energy Loss Spectrometry in Materials Science and the EELS Atlas / C.C. Ahn (Ed.). – Wiley-VCH Verlag, 2006. – 472 p.

31. Kurata H., Isoda S., Kobayashi T. Chemical Mapping by Energy-Filtering Transmission Electron Microscopy // J. Electron Microsc. (Tokyo) . – 1996. – V. 45, N 4. – P. 317–320.

32. Frolov A. S., Krikun E. V., Prikhodko K. E., Kuleshova E. A. Development of the DIFFRACALC program for analyzing the phase composition of alloys // Crystallogr. Reports. – 2017. – V. 62, N 5.

33. Kuleshova E. A., Frolov A. S., Maltsev D. A., Safonov D. V, Krikun E. V, Fedotova S. V. Structure and Phase Composition of Zirconium Fuel Claddings in Initial State and after Creep Tests // KnE Mater. Sci. 15th Int. Sch. “New Mater. – Mater. Innov. energy”, 2017.

34. Yang H. L., Matsukawa Y., Kano S., Duan Z. G., Murakami K., Abe H. Investigation on microstructural evolution and hardening mechanism in dilute Zr–Nb binary alloys // J. Nucl. Mater.– 2016. – V. 481. – P. 117–124.

35. Светухин В. В., Львов П. Е., Новоселов А. Е., Кобылянский Г. П., Шишов В. Н. Моделирование процесса роста ниобиевых преципитатов в сплаве Zr–1%Nb при облучении // Физико-математические науки. Физика. – 2007. – № 4. – С. 105–111.

36. Hayashi H., Ogata K., Baba T., Kamimura K. Research Program to Elucidate Outside-in Failure of High Burnup Fuel Cladding // J. Nucl. Sci. Technol. – 2006. – V. 43, N 9. – P. 1128–1135.

37. Raynaud P., Bielen A. Cladding hydrogen based regulations in the United States // 2011 Water React. Fuel Perform. Meet., 2011.

38. R ud l ing P., P a t t e rso n C., N i kul i n a A., C ox B. Performance evaluation of new advanced Zr alloys for BWRs and PWRs / VVERs I. Advanced Nuclear Technology International. V. 2, 2017. – 22 p.

39. Lambrecht M., Meslin E., Malerba L.,et al. On the correlation between irradiation-induced microstructural features and the hardening of reactor pressure vessel steels // J. Nucl. Mater. – 2010. – V. 406, N 1. – P. 84–89.


Рецензия

Для цитирования:


Гурович Б.А., Фролов А.С., Кулешова Е.А., Мальцев Д.А., Сафонов Д.В., Кочкин В.Н., Решетников А.А. Эволюция структурно-фазового состояния оболочек твэлов из сплава Э110 под действием повышенных температур и напряжений. Вопросы материаловедения. 2019;(3(99)):157-174. https://doi.org/10.22349/1994-6716-2019-99-3-157-174

For citation:


Gurovich B.A., Frolov A.S., Kuleshova E.A., Maltsev D.A., Safonov D.V., Kochkin V.N., Reshetnikov A.A. Evolution of the structural phase state of E110 fuel claddings under high temperatures and stress. Voprosy Materialovedeniya. 2019;(3(99)):157-174. (In Russ.) https://doi.org/10.22349/1994-6716-2019-99-3-157-174

Просмотров: 430


ISSN 1994-6716 (Print)