

Evolution of the structural phase state of E110 fuel claddings under high temperatures and stress
https://doi.org/10.22349/1994-6716-2019-99-3-157-174
Abstract
About the Authors
B. A. GurovichRussian Federation
Dr Sc. (Eng)
1 Akademika Kurchatova Sq., 123182 Moscow, Russian Federation
A. S. Frolov
Russian Federation
Cand Sc. (Eng)
1 Akademika Kurchatova Sq., 123182 Moscow, Russian Federation
E. A. Kuleshova
Russian Federation
Dr Sc. (Eng)
1 Akademika Kurchatova Sq., 123182 Moscow, Russian Federation
31 Kashirskoe Sh., 115409 Moscow, Russian Federation
D. A. Maltsev
Russian Federation
Cand Sc. (Eng)
1 Akademika Kurchatova Sq., 123182 Moscow, Russian Federation
D. V. Safonov
Russian Federation
1 Akademika Kurchatova Sq., 123182 Moscow, Russian Federation
V. N. Kochkin
Russian Federation
Cand Sc. (Eng)
1 Akademika Kurchatova Sq., 123182 Moscow, Russian Federation
A. A. Reshetnikov
Russian Federation
1 Akademika Kurchatova Sq., 123182 Moscow, Russian Federation
References
1. Desgranges, L., Ferroud-Plattet, M.P., Alloncle, R., Aubrun, I., Untrau, J.M., Lhuillery, P., Behavior of a defective nuclear fuel rod in dry storage conditions studied with a new experimental setup, Nucl. Technol, 2008, V. 163, No 2, pp. 252–260.
2. Romanato, L.S., Advantages of Dry Hardened Cask Storage Over Wet Storage for Spent Nuclear Fuel, 2011 Int. Nucl. Atl. Conf. – Ina. 2011 Belo Horizonte, MG, Brazil, Oct. 24–28, 2011 Assoc. Bras. Energ. Nucl. – ABEN, 2011.
3. Won, J.J., Kim, M.S., Kim, K.T., Heat-up and cool-down temperature-dependent hydride reorientation behaviors in zirconium alloy cladding tubes, Nucl. Eng. Technol. Korean Nuclear Society, 2014, V. 46, No 5, pp. 681–688.
4. Yang, W.J.S., Tucker, R.P., Cheng, B., Adamson, R.B., Precipitates in zircaloy: Identification and the effects of irradiation and thermal treatment, J. Nucl. Mater., 1986, V. 138, No 2–3, pp. 185–195.
5. Griffiths, M., Gilbert, R.W., Carpenter, G.J.C., Phase instability, decomposition and redistribution of intermetallic precipitates in Zircaloy-2 and -4 during neutron irradiation, J. Nucl. Mater., 1987, V. 150, No 1, pp. 53–66.
6. Ribis, J., Doriot, S., Onimus, F., Shape, orientation relationships and interface structure of beta-Nb nano-particles in neutron irradiated zirconium alloy, J. Nucl. Mater., 2018, V. 511, pp. 18–29.
7. Doriot, S., Gilbon, D., Bechade, J.-L., Mathon, M.-H., Legras, L., Mardon, J.-P., Microstructural Stability of M5TM Alloy Irradiated up to High Neutron Fluences, J. ASTM Int., 2005, V. 2, No 7, p. 12332.
8. Gurovich, B.A., Frolov, A.S., Kuleshova, E.A., Maltsev, D.A., Safonov, D.V., Kochkin, V.N., Alexeeva, E.V., Stepanov, N.V., Degradatsiya materialov obolochek tvelov na osnove tsirkoniya v usloviyakh ekspluatatsii reaktorov tipa VVER [Degradation of fuel rods materials based on zirconium after operation in WWER-type reactors], Voprosy Materialovedeniya, 2018, No 3 (95), pp. 191–205.
9. Novikov, V.V., Markelov, V.A., Tselishchev, A.V., Konkov, V.F., Sinelnikov, L.P., Panchenko, V.L., Structure-phase changes and corrosion behavior of e110 and e635 claddings of fuels in water cooled reactors, J. Nucl. Sci. Technol., 2006, V. 43, No 9, pp. 991–997.
10. Novikov, V., Markelov, V., Gusev, A., Malgin, A., Kabanov, A., Pimenov, Y., Some Results on the Properties Investigations of Zirconium Alloys for WWER-1000 Fuel Cladding, Int. Conf. WWER fuel performance, Model. Exp. Support. Helena Resort (Bulgaria); 17–24 Sep 2011, pp. 459–467.
11. Markelov, V.A., On correlation of composition, structural-phase state, and properties of E635 zirconium alloy, Inorg. Mater. Appl. Res., 2010, V. 1, No 3, pp. 245–253.
12. Gurovich, B.A., Frolov, A.S., Kuleshova, E.A., Maltsev, D.A., Safonov, D.V., Alekseeva, E.V., TEM-studies of the dislocation loops and niobium-based precipitates in E110 alloy after operation in VVER-type reactor conditions, Mater. Charact., 2019, V. 150, pp. 22–30.
13. Novikov, V.V., Shishov, V.N., Shevyakov, A.Y., Voevodin, V.N., Borodin, O.V., Bryk, V.V., Vasilenko, R.L., Investigation of the microstructure of zirconium alloys irradiated by zirconium ions in an accelerator, Atomic Energy, 2014, V. 115, Issue 5, pp. 307–312.
14. Shishov, V.N., Barberis, P., Dean, S.W., The Evolution of Microstructure and Deformation Stability in Zr–Nb–(Sn, Fe) Alloys Under Neutron Irradiation, J. ASTM Int., 2010, V. 7, No 7, p. 103005.
15. Shishov, V., Peregud, M., Nikulina, A., Pimenov, Y., Kobylyansky, G., Novoselov, A., Ostrovsky, Z., Obukhov, A., Influence of Structure-Phase State of Nb Containing Zr Alloys on Irradiation-Induced Growth, J. ASTM Int., 2005, V. 2, No 8, p. 12431.
16. Kirбly, M., Antуk, D.M., Horvбth, L., Hуzer, Z., Evaluation of axial and tangential ultimate tensile strength of zirconium cladding tubes, Nucl. Eng. Technol., 2018, V. 50, No 3, pp. 425–431.
17. Fedotov, P.V., Loshmanov, L.P., Kostyukhina, A.V., Recovery of the mechanical properties of an irradiated E110 alloy, Russ. Metall., 2014, V. 2014, No 9, pp. 762–767.
18. Malgin, A.G., Markelov, V.A., Novikov, V.V., Shelepov, I.A., Donnikov, V.E., Latunin, V.I., Linhart, S., Belac, J., Vrtilkova, V., Krejci, J., Research of high-temperature oxidation behavior of E110opt and E110М sponge based zirconium alloys, TopFuel 2018, A0239, V. 110, pp. 1–10. URL: https://www.euronuclear.org/events/topfuel/topfuel2018/fullpapers/TopFuel2018-A0239-fullpaper.pdf (reference date 19/09/2019)
19. Walters, L., Douglas, S.R., Griffiths, M., Equivalent Radiation Damage in Zirconium Irradiated in Various Reactors, Zircon. Nucl. Ind. 18th Int. Symp., Comstock, R.J., Motta, A.T., (eds.), ASTM International, 2018, pp. 676–690.
20. Sindo, D., Oikava, T., Analiticheskaya prosvechivayushchaya elektronnaya mikroskopiya [Analytical transmission electron microscopy], Moscow: Tekhnosfera, 2006.
21. Malis, T., Cheng, S.C., Egerton, R.F., EELS log-ratio technique for specimen-thickness measurement in the TEM, J. Electron Microsc. Tech., 1988, V. 8, No 2, pp. 193–200.
22. Yang, Y.Y., Egerton, R.F., Tests of two alternative methods for measuring specimen thickness in a transmission electron microscope, Micron, 1995, V. 26, No 1, pp. 1–5.
23. Zhang, H.-R., Egerton, R.F., Malac, M., Local thickness measurement through scattering contrast and electron energy-loss spectroscopy, Micron, 2012, V. 43, No 1, pp. 8–15.
24. Egerton, R.F., Cheng, S.C., Measurement of local thickness by electron energy-loss spectroscopy, Ultramicroscopy, 1987, V. 21, No 3, pp. 231–244.
25. Iakoubovskii, K., Mitsuishi, K., Nakayama, Y., Furuya, K., Thickness measurements with electron energy loss spectroscopy, Microsc. Res. Tech., 2008, V. 71, No 8, pp. 626–631.
26. Williams, D.B., Carter, C.B., Transmission Electron Microscopy: A Textbook for Materials Science, Springer, 2009, V. 1–4.
27. Saltykov, S.A., Stereometricheskaya metallografiya [Stereometric metallography], Moscow: Metallurgiya, 1976.
28. Bell, D.C., Garratt-Reed, A.J., Energy Dispersive X-ray Analysis in the Electron Microscope, Oxford: Taylor & Francis, 2003, p. 160.
29. Williams, D.B., Carter, C.B., Transmission Electron Microscopy: A Textbook for Materials Science, Mater. Sci. Springer, 2009, V. 1–4, p. 760.
30. Transmission Electron Energy Loss Spectrometry in Materials Science and the EELS Atlas, Ahn, C.C., (Ed.), Wiley-VCH Verlag, 2006.
31. Kurata, H., Isoda, S., Kobayashi, T., Chemical Mapping by Energy-Filtering Transmission Electron Microscopy, J. Electron Microsc. (Tokyo), 1996, V. 45, No 4, pp. 317–320.
32. Frolov, A.S., Krikun, E.V., Prikhodko, K.E., Kuleshova, E.A., Development of the DIFFRACALC program for analyzing the phase composition of alloys, Crystallogr. Reports, 2017, V. 62, No 5.
33. Kuleshova, E.A., Frolov, A.S., Maltsev, D.A., Safonov, D.V., Krikun, E.V., Fedotova, S.V., Structure and Phase Composition of Zirconium Fuel Claddings in Initial State and after Creep Tests, KnE Mater. Sci. 15th Int. Sch. “New Mater. – Mater. Innov. energy.”, 2017.
34. Yang, H.L., Matsukawa, Y., Kano, S., Duan, Z.G., Murakami, K., Abe, H., Investigation on microstructural evolution and hardening mechanism in dilute Zr–Nb binary alloys, J. Nucl. Mater., 2016, V. 481, pp. 117–124.
35. Svetukhin, V.V., Lvov, P.E., Novoselov, A.E., Kobylyansky, G.P., Shishov, V.N., Modelirovanie protsessa rosta niobievykh pretsipitatov v splave Zr–1%Nb pri obluchenii [Modeling the growth of niobium precipitates in the Zr–1% Nb alloy upon irradiation], Fiziko-matematicheskie nauki: Fizika, 2007, V. 4, pp. 105–111.
36. Hayashi, H., Ogata, K., Baba, T., Kamimura, K., Research Program to Elucidate Outside-in Failure of High Burnup Fuel Cladding, J. Nucl. Sci. Technol., 2006, V. 43, No 9, pp. 1128–1135.
37. Raynaud, P., Bielen, A., Cladding hydrogen based regulations in the United States, Water React. Fuel Perform. Meet., 2011.
38. Rudling, P., Patterson, C., Nikulina, A., Cox, B., Performance evaluation of new advanced Zr alloys for BWRs and PWRs, VVERs, Advanced Nuclear Technology International, 2017, V. 2.
39. Lambrecht, M., Meslin, E., Malerba, L., Hernбndez-Mayoral, M., Bergner, F., Pareige, P., Radiguet, B., Almazouzi, A., On the correlation between irradiation-induced microstructural features and the hardening of reactor pressure vessel steels, J. Nucl. Mater., 2010, V. 406, No 1, pp. 84–89.
Review
For citations:
Gurovich B.A., Frolov A.S., Kuleshova E.A., Maltsev D.A., Safonov D.V., Kochkin V.N., Reshetnikov A.A. Evolution of the structural phase state of E110 fuel claddings under high temperatures and stress. Voprosy Materialovedeniya. 2019;(3(99)):157-174. (In Russ.) https://doi.org/10.22349/1994-6716-2019-99-3-157-174