Preview

Voprosy Materialovedeniya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Evolution of the structural phase state of E110 fuel claddings under high temperatures and stress

https://doi.org/10.22349/1994-6716-2019-99-3-157-174

Abstract

The paper presents results of microstructural studies of E110 alloy specimens in fuel claddings based on sponge and electrolytic zirconium after operation in the fuel elements in VVER-1000. During the creep tests with axial loading no changes were observed in the studied specimens referring the chemical composition, average size and bulk density of the second phases, including radiation-induced ones. It was found that during creep tests, dislocation loops are annealed, i.e. an increase occurs in their average size with a  simultaneous decrease in bulk density. It was shown that the specimens of fuel elements claddings from an alloy based on electrolytic zirconium demonstrate greater creep resistance compared with sponge based zirconium specimens, which is apparently linked with a higher density of globular β-Nb precipitates in the irradiated electrolytic zirconium specimens.

About the Authors

B. A. Gurovich
National Research Center “Kurchatov Institute”
Russian Federation
Dr Sc. (Eng)

1 Akademika Kurchatova Sq., 123182 Moscow, Russian Federation


A. S. Frolov
National Research Center “Kurchatov Institute”
Russian Federation
Cand Sc. (Eng)

1 Akademika Kurchatova Sq., 123182 Moscow, Russian Federation


E. A. Kuleshova
National Research Center “Kurchatov Institute”, National Research Nuclear University ''MEPhI” (Moscow Engineering Physics Institute)
Russian Federation
Dr Sc. (Eng)

1 Akademika Kurchatova Sq., 123182 Moscow, Russian Federation

31 Kashirskoe Sh., 115409 Moscow, Russian Federation



D. A. Maltsev
National Research Center “Kurchatov Institute”
Russian Federation
Cand Sc. (Eng)

1 Akademika Kurchatova Sq., 123182 Moscow, Russian Federation


D. V. Safonov
National Research Center “Kurchatov Institute”
Russian Federation
1 Akademika Kurchatova Sq., 123182 Moscow, Russian Federation


V. N. Kochkin
National Research Center “Kurchatov Institute”
Russian Federation
Cand Sc. (Eng)

1 Akademika Kurchatova Sq., 123182 Moscow, Russian Federation


A. A. Reshetnikov
National Research Center “Kurchatov Institute”
Russian Federation
1 Akademika Kurchatova Sq., 123182 Moscow, Russian Federation


References

1. Desgranges, L., Ferroud-Plattet, M.P., Alloncle, R., Aubrun, I., Untrau, J.M., Lhuillery, P., Behavior of a defective nuclear fuel rod in dry storage conditions studied with a new experimental setup, Nucl. Technol, 2008, V. 163, No 2, pp. 252–260.

2. Romanato, L.S., Advantages of Dry Hardened Cask Storage Over Wet Storage for Spent Nuclear Fuel, 2011 Int. Nucl. Atl. Conf. – Ina. 2011 Belo Horizonte, MG, Brazil, Oct. 24–28, 2011 Assoc. Bras. Energ. Nucl. – ABEN, 2011.

3. Won, J.J., Kim, M.S., Kim, K.T., Heat-up and cool-down temperature-dependent hydride reorientation behaviors in zirconium alloy cladding tubes, Nucl. Eng. Technol. Korean Nuclear Society, 2014, V. 46, No 5, pp. 681–688.

4. Yang, W.J.S., Tucker, R.P., Cheng, B., Adamson, R.B., Precipitates in zircaloy: Identification and the effects of irradiation and thermal treatment, J. Nucl. Mater., 1986, V. 138, No 2–3, pp. 185–195.

5. Griffiths, M., Gilbert, R.W., Carpenter, G.J.C., Phase instability, decomposition and redistribution of intermetallic precipitates in Zircaloy-2 and -4 during neutron irradiation, J. Nucl. Mater., 1987, V. 150, No 1, pp. 53–66.

6. Ribis, J., Doriot, S., Onimus, F., Shape, orientation relationships and interface structure of beta-Nb nano-particles in neutron irradiated zirconium alloy, J. Nucl. Mater., 2018, V. 511, pp. 18–29.

7. Doriot, S., Gilbon, D., Bechade, J.-L., Mathon, M.-H., Legras, L., Mardon, J.-P., Microstructural Stability of M5TM Alloy Irradiated up to High Neutron Fluences, J. ASTM Int., 2005, V. 2, No 7, p. 12332.

8. Gurovich, B.A., Frolov, A.S., Kuleshova, E.A., Maltsev, D.A., Safonov, D.V., Kochkin, V.N., Alexeeva, E.V., Stepanov, N.V., Degradatsiya materialov obolochek tvelov na osnove tsirkoniya v usloviyakh ekspluatatsii reaktorov tipa VVER [Degradation of fuel rods materials based on zirconium after operation in WWER-type reactors], Voprosy Materialovedeniya, 2018, No 3 (95), pp. 191–205.

9. Novikov, V.V., Markelov, V.A., Tselishchev, A.V., Konkov, V.F., Sinelnikov, L.P., Panchenko, V.L., Structure-phase changes and corrosion behavior of e110 and e635 claddings of fuels in water cooled reactors, J. Nucl. Sci. Technol., 2006, V. 43, No 9, pp. 991–997.

10. Novikov, V., Markelov, V., Gusev, A., Malgin, A., Kabanov, A., Pimenov, Y., Some Results on the Properties Investigations of Zirconium Alloys for WWER-1000 Fuel Cladding, Int. Conf. WWER fuel performance, Model. Exp. Support. Helena Resort (Bulgaria); 17–24 Sep 2011, pp. 459–467.

11. Markelov, V.A., On correlation of composition, structural-phase state, and properties of E635 zirconium alloy, Inorg. Mater. Appl. Res., 2010, V. 1, No 3, pp. 245–253.

12. Gurovich, B.A., Frolov, A.S., Kuleshova, E.A., Maltsev, D.A., Safonov, D.V., Alekseeva, E.V., TEM-studies of the dislocation loops and niobium-based precipitates in E110 alloy after operation in VVER-type reactor conditions, Mater. Charact., 2019, V. 150, pp. 22–30.

13. Novikov, V.V., Shishov, V.N., Shevyakov, A.Y., Voevodin, V.N., Borodin, O.V., Bryk, V.V., Vasilenko, R.L., Investigation of the microstructure of zirconium alloys irradiated by zirconium ions in an accelerator, Atomic Energy, 2014, V. 115, Issue 5, pp. 307–312.

14. Shishov, V.N., Barberis, P., Dean, S.W., The Evolution of Microstructure and Deformation Stability in Zr–Nb–(Sn, Fe) Alloys Under Neutron Irradiation, J. ASTM Int., 2010, V. 7, No 7, p. 103005.

15. Shishov, V., Peregud, M., Nikulina, A., Pimenov, Y., Kobylyansky, G., Novoselov, A., Ostrovsky, Z., Obukhov, A., Influence of Structure-Phase State of Nb Containing Zr Alloys on Irradiation-Induced Growth, J. ASTM Int., 2005, V. 2, No 8, p. 12431.

16. Kirбly, M., Antуk, D.M., Horvбth, L., Hуzer, Z., Evaluation of axial and tangential ultimate tensile strength of zirconium cladding tubes, Nucl. Eng. Technol., 2018, V. 50, No 3, pp. 425–431.

17. Fedotov, P.V., Loshmanov, L.P., Kostyukhina, A.V., Recovery of the mechanical properties of an irradiated E110 alloy, Russ. Metall., 2014, V. 2014, No 9, pp. 762–767.

18. Malgin, A.G., Markelov, V.A., Novikov, V.V., Shelepov, I.A., Donnikov, V.E., Latunin, V.I., Linhart, S., Belac, J., Vrtilkova, V., Krejci, J., Research of high-temperature oxidation behavior of E110opt and E110М sponge based zirconium alloys, TopFuel 2018, A0239, V. 110, pp. 1–10. URL: https://www.euronuclear.org/events/topfuel/topfuel2018/fullpapers/TopFuel2018-A0239-fullpaper.pdf (reference date 19/09/2019)

19. Walters, L., Douglas, S.R., Griffiths, M., Equivalent Radiation Damage in Zirconium Irradiated in Various Reactors, Zircon. Nucl. Ind. 18th Int. Symp., Comstock, R.J., Motta, A.T., (eds.), ASTM International, 2018, pp. 676–690.

20. Sindo, D., Oikava, T., Analiticheskaya prosvechivayushchaya elektronnaya mikroskopiya [Analytical transmission electron microscopy], Moscow: Tekhnosfera, 2006.

21. Malis, T., Cheng, S.C., Egerton, R.F., EELS log-ratio technique for specimen-thickness measurement in the TEM, J. Electron Microsc. Tech., 1988, V. 8, No 2, pp. 193–200.

22. Yang, Y.Y., Egerton, R.F., Tests of two alternative methods for measuring specimen thickness in a transmission electron microscope, Micron, 1995, V. 26, No 1, pp. 1–5.

23. Zhang, H.-R., Egerton, R.F., Malac, M., Local thickness measurement through scattering contrast and electron energy-loss spectroscopy, Micron, 2012, V. 43, No 1, pp. 8–15.

24. Egerton, R.F., Cheng, S.C., Measurement of local thickness by electron energy-loss spectroscopy, Ultramicroscopy, 1987, V. 21, No 3, pp. 231–244.

25. Iakoubovskii, K., Mitsuishi, K., Nakayama, Y., Furuya, K., Thickness measurements with electron energy loss spectroscopy, Microsc. Res. Tech., 2008, V. 71, No 8, pp. 626–631.

26. Williams, D.B., Carter, C.B., Transmission Electron Microscopy: A Textbook for Materials Science, Springer, 2009, V. 1–4.

27. Saltykov, S.A., Stereometricheskaya metallografiya [Stereometric metallography], Moscow: Metallurgiya, 1976.

28. Bell, D.C., Garratt-Reed, A.J., Energy Dispersive X-ray Analysis in the Electron Microscope, Oxford: Taylor & Francis, 2003, p. 160.

29. Williams, D.B., Carter, C.B., Transmission Electron Microscopy: A Textbook for Materials Science, Mater. Sci. Springer, 2009, V. 1–4, p. 760.

30. Transmission Electron Energy Loss Spectrometry in Materials Science and the EELS Atlas, Ahn, C.C., (Ed.), Wiley-VCH Verlag, 2006.

31. Kurata, H., Isoda, S., Kobayashi, T., Chemical Mapping by Energy-Filtering Transmission Electron Microscopy, J. Electron Microsc. (Tokyo), 1996, V. 45, No 4, pp. 317–320.

32. Frolov, A.S., Krikun, E.V., Prikhodko, K.E., Kuleshova, E.A., Development of the DIFFRACALC program for analyzing the phase composition of alloys, Crystallogr. Reports, 2017, V. 62, No 5.

33. Kuleshova, E.A., Frolov, A.S., Maltsev, D.A., Safonov, D.V., Krikun, E.V., Fedotova, S.V., Structure and Phase Composition of Zirconium Fuel Claddings in Initial State and after Creep Tests, KnE Mater. Sci. 15th Int. Sch. “New Mater. – Mater. Innov. energy.”, 2017.

34. Yang, H.L., Matsukawa, Y., Kano, S., Duan, Z.G., Murakami, K., Abe, H., Investigation on microstructural evolution and hardening mechanism in dilute Zr–Nb binary alloys, J. Nucl. Mater., 2016, V. 481, pp. 117–124.

35. Svetukhin, V.V., Lvov, P.E., Novoselov, A.E., Kobylyansky, G.P., Shishov, V.N., Modelirovanie protsessa rosta niobievykh pretsipitatov v splave Zr–1%Nb pri obluchenii [Modeling the growth of niobium precipitates in the Zr–1% Nb alloy upon irradiation], Fiziko-matematicheskie nauki: Fizika, 2007, V. 4, pp. 105–111.

36. Hayashi, H., Ogata, K., Baba, T., Kamimura, K., Research Program to Elucidate Outside-in Failure of High Burnup Fuel Cladding, J. Nucl. Sci. Technol., 2006, V. 43, No 9, pp. 1128–1135.

37. Raynaud, P., Bielen, A., Cladding hydrogen based regulations in the United States, Water React. Fuel Perform. Meet., 2011.

38. Rudling, P., Patterson, C., Nikulina, A., Cox, B., Performance evaluation of new advanced Zr alloys for BWRs and PWRs, VVERs, Advanced Nuclear Technology International, 2017, V. 2.

39. Lambrecht, M., Meslin, E., Malerba, L., Hernбndez-Mayoral, M., Bergner, F., Pareige, P., Radiguet, B., Almazouzi, A., On the correlation between irradiation-induced microstructural features and the hardening of reactor pressure vessel steels, J. Nucl. Mater., 2010, V. 406, No 1, pp. 84–89.


Review

For citations:


Gurovich B.A., Frolov A.S., Kuleshova E.A., Maltsev D.A., Safonov D.V., Kochkin V.N., Reshetnikov A.A. Evolution of the structural phase state of E110 fuel claddings under high temperatures and stress. Voprosy Materialovedeniya. 2019;(3(99)):157-174. (In Russ.) https://doi.org/10.22349/1994-6716-2019-99-3-157-174

Views: 447


ISSN 1994-6716 (Print)