

Formation of antifriction coatings on titanium by electrospark alloying with metal ceramic anodes
https://doi.org/10.22349/1994-6716-2019-100-4-61-67
Abstract
The paper presents the results of experimental studies in the field of the formation of anti-friction coatings on VT-1.0 titanium alloy by electrospark alloying.
About the Authors
M. A. MarkovRussian Federation
Cand Sc. (Eng)
49 Shpalernaya St, 191015 St Petersburg
S. A. Persinin
Russian Federation
Cand Sc. (Chem)
21 Syrkovskoe Highway, 173008, Veliky Novgorod
A. V. Krasikov
Russian Federation
Cand Sc. (Chem)
49 Shpalernaya St, 191015 St Petersburg
A. D. Bykova
Russian Federation
49 Shpalernaya St, 191015 St Petersburg,
61 Bolshoy Ave, 199178, St Petersburg
A. N. Belyakov
Russian Federation
49 Shpalernaya St, 191015 St Petersburg,
61 Bolshoy Ave, 199178, St Petersburg
Yu. A. Fadin
Russian Federation
Dr Sc. (Eng)
61 Bolshoy Ave, 199178, St Petersburg
References
1. Boytsov, A.G., Maskov, V.N., Smolentsev, V.A., Khvorostukhin, L.A., Uprochnenie poverkhnostey detaley kombinirovannymi sposobami [Hardening of surfaces of parts by combined methods], Moscow, 1998.
2. Burumkulov, F.Kh., Lezin , P.P., Senin , P.V., e t a l ., Elektroiskrovye tekhnologii vosstanovleniya i uprochneniya detaley mashin i instrumentov (teoriya i praktika) [Electrospark technology for restoration and hardening of machine parts and tools (theory and practice)], Saransk: Krasny Oktyabr, 2003.
3. Verkhoturov, A.D., Formirovanie poverkhnostnogo sloya metallov pri elektroiskrovom legirovanii [The formation of the surface layer of metals during electrospark alloying], Vladivostok: Dalnauka, 1995.
4. Borodin , I . F . , Sudnik, Yu.A., Avtomatizatsiya tekhnologicheskikh protsessov [Automation of technological processes]. Moscow: Koloss, 2004.
5. Davydov, V.M., Yakuba, D.D., Ledkov, E.A., Khimukhin, S.N., Nikitenk o , A.V., Intellektualnaya sistema upravleniya protsessom elektroiskrovogo legirovaniya (EIL) [Intelligent electrospark alloy control system (ESA)], Vestnik TOGU (Pacific Ocean University), 2014, No 2(33), pp. 55– 57.
6. Ivanov , V. I . , Burumkulo v , F .Kh ., On electrodeposition of thick coatings of increased ontinuity, Surface Engineering and Applied Electrochemistry, 2014, V. 50, Issue 5, pp. 377–383.
7. Fadin, Yu. A . , Markov, M.A., Ordanyan, S . S . , Otsenka iznosostoykosti materialov na osnove oksida alyuminiya [Assessment of wear resistance of materials based on aluminum oxide], Ogneupory i tekhnicheskaya keramika, 2015, No 4–5, pp. 8–10.
8. Iskhakov a , G.A. , Marusina , V. I ., Strukturnoe i fazovoe sostoyanie chastits karbida volframa sintezirovannykh v elektroiskrovom razryade [Structural and phase state of tungsten carbide particles synthesized in an electric spark discharge], Poroshkovaya metallurgiya, 1989, No 10, pp. 13–18.
9. Markov, M.A., Previslov, S.N., Krasikov, A.V., Gerashchenkov, D.A., Byk ov a , A.D. , Fe d os e ev , M.L., Study of the microarc oxidation of aluminum modified with silicon carbide particles, Russian Journal of Applied Chemistry, 2018, V. 91, No 4, pp. 543–549.
10. Verkhoturov, A.D., Podchernyaeva, I .A., Pryadko , L.F., Elektrodnye materialy dlia elektroiskrovogo legirovaniya [Electrode materials for electrospark alloying], Moscow: Nauka, 1988.
Review
For citations:
Markov M.A., Persinin S.A., Krasikov A.V., Bykova A.D., Belyakov A.N., Fadin Yu.A. Formation of antifriction coatings on titanium by electrospark alloying with metal ceramic anodes. Voprosy Materialovedeniya. 2019;(4(100)):61-67. (In Russ.) https://doi.org/10.22349/1994-6716-2019-100-4-61-67