

Methodical approach for studying kinetics of short and long fatigue cracks growth for irradiated reactor materials. Part 2. Сonstruction of fatique propagation rate diagram on the basis of test of precracked charpy specimens
https://doi.org/10.22349/1994-6716-2019-100-4-193-205
Abstract
The finite element technique has been used for estimating the stress intensity factors (SIF) for short cracks emanating from a notch of single-edge bend specimen (SE(B)) and also weight function for this type of the specimen have been determined. On the basis of the received results the uniform equation for calculations SIF for short and long cracks in a specimen such as SEB (at h/W = 0.3) has been offered. The technique of construction of full kinetic diagrams of growth of the short and long fatigue cracks, initiated from the notch, is developed and approved. Full kinetic diagrams of growth of fatigue cracks (short and long) in steel Х18Н10Т and in weld metal in initial and irradiated (up to 40 dpa) conditions were built.
About the Authors
V. I. SmirnovRussian Federation
Cand Sc. (Eng)
49 Shpalernaya St, 191015 St Petersburg
A. J. Minkin
Russian Federation
49 Shpalernaya St, 191015 St Petersburg
B. Z. Margolin
Russian Federation
Dr Sc. (Eng)
49 Shpalernaya St, 191015 St Petersburg
S. M. Balakin
Russian Federation
51 Obukhovskoy Oborony Ave, 192029 St Petersburg
References
1. Margolin, B.Z. , Minkin, A.J . , Smirnov, V.I . , Fedorova, V.A., Kokhonov, V. I . , Kozlov, A.V. , Evseev , M.V. , Kozmanov , E.A. , Issledovanie vliyaniya neitronnogo oblucheniya na staticheskuyu i tsiklicheskuyu treshchinostoykost khromonikelevoy austenitnoy stali [Investigation of the effect of neutron irradiation on the static and cyclic crack resistance of austenitic chromium-nickel steel], Voprosy Materialovedeniya, 2008, No 1 (53), pp. 111–122.
2. Margol i n , B .Z. , Minkin , A.J. , Smirnov, V.I . , Sorokin , A.A., Kokhonov, V.I . , Vliyanie neitronnogo oblucheniya na skorost rosta ustalostnykh treshchin v austenitnoy stali 08KH18N10T i metalle ee svarnykh soedineniy [The effect of neutron irradiation on the growth rate of fatigue cracks in austenitic steel 08Kh18N10T and the metal of its welded joints], Voprosy Materialovedeniya, 2013, No 2 (74), pp. 123–138.
3. Smirnov, V.I . , Minkin , A.J. , Margolin, B.Z. , Kokhonov, V.I . , Metodicheskie osobennosti issledovaniya kinetiki rosta korotkikh i dlinnykh ustalostnykh treshchin v obluchennykh reaktornykh materialakh na malorazmernykh obraztsakh. Chast 1. Postanovka zadachi. Issledovanie vliyaniya ostroty iskhodnogo nadreza na kineticheskie diagrammy rosta ustalostnykh treshchin v obraztsakh [Methodical approach for studying kinetics of short and long fatigue cracks growth for irradiated reactor materials. Part 1. Statement of problem. The effect of the initial notch acuity on the fatigue crack rate on small-sized specimens], Voprosy Materialovedeniya, 2019, No 2 (98), pp. 191–202.
4. Jergeus, H.A., A simple formula for the stress intensity factors of cracks in side notches, Int. J. of Fract, 1972, V. 14, Issue 3, pp. 113–116.
5. Harkegard , G., An effective stress intensity factor and the determination of the notched fatigue limit. Fatigue Thresholds: Fundamentals and Engineering Applications. London: Chameleon Press Ltd., 1981, V. 2, pp. 867–879.
6. Wormsen, A., Fjeldstad, A., Härkegård, G., The application of asymptotic solutions to a semi-elliptical crack at the root of a notch, Eng. Fract. Mech, 2006, V. 73, Issue 13, pp. 1899–1912.
7. Fjeldstad , A., Modelling of Fatigue Crack Growth at Notches and Other Stress Raisers: Thesis for the Degree of Doctor of Science (Ph). Norwegian University of Science and Technology, Trondheim, 2007.
8. McDowell, D.L., Basic issues in the mechanics of high cycle metal fatigue, Int. J. of Fract, 1996, V. 80, pp. 80–103.
9. Ritchie , R.O., Lankford, J., Small fatigue cracks: a statement of the problem and potential solutions, Material Science and Engineering, 1996, V. 84, pp. 11–16.
10. Tanaka , K. , Nak ai , Y., Propagation and non-propagation of short fatigue cracks at a sharp notch, Fatigue and Fracture Engineering Material and Structure, 1983, V. 6, No 4, pp. 315–327.
11. Shin, C . S . , Smith , R.A., Fatigue crack growth at stress concentrations: the role of notch plasticity and crack closure, Eng. Fract. Mech, 1988, V. 29, Issue 3, pp. 301–315.
12. ASTM Е1820-13. Standard Test Method for Measurement of Fracture Toughness.
13. Fett , T., Stress Intensity Factors. T-Stresses. Weight Functions. Institute of Ceramics in Mechanical Engineering, University of Karlsruhe, 2008.
14. Aratania, M., Knott , J . F ., The growth of short fatigue cracks ahead of a notch in high strength steel, Eng. Failure Analysis, 2010, V. 17, Issue 1, pp. 200–207.
15. Jones, R., Peng, D. Pitt, S. Wallbrink C., Weight functions, CTOD, and related solutions for cracks at notches, Eng. Failure Analysis, 2004, V. 11, Issue 1, pp. 79–114.
16. Shen, G., Glinka, G . , Determination of weight functions from reference stress intensity factors, Theoretical and Applied Fract. Mech, 1991, V. 15, pp. 237–245.
17. Glinka , G. , Newpo r t , A., Universal features of elastic notch tip stress fields, Int. J. of Fatigue, 1987, V. 9, No 3, pp. 143–150.
18. ASTM STP 1149: Small-Crack Test Methods, Larsen, J.M., Allison J.E. (Eds.), 1992.
19. ASTM Е647-13: Standard Test Method for Measurement of Fatigue Crack Growth Rates.
20. RCC-MR, Design and Construction Rules for Mechanical Components of FBR Nuclear Islands, Appendix A16, Edition 2002, AFCEN, France, 2002.
21. ISO 12108:2002: Metallic materials. Fatigue testing. Fatigue crack growth method.
22. ASTM STP 1149: Measurement of Small Cracks by Photomicroscopy: Experiments and Analysis, Larsen J.M., Jira J.R., Ravichandran K.S., (Eds.), pp. 57–80.
23. Davidson, D., Chan, K., McClung, R., Hudak, S., Small fatiguecracks, Ritchie , R.O., Comprehensive structural integrity, Elsevier, 2003, V. 4, pp. 129–164.
24. Zerbst , U., Vormwald, M., Pippan, R . , et a l ., About the fatigue crack propagation threshold of metals as a design criterion – A review, Engineering Fracture Mechanics, 2016, V. 153, pp. 190– 243.
25. Kendall , J . M . , King, J . E ., Short Fatigue Crack Growth Behaviour: Data Analysis Effects, Int. J. of Fatigue, 1988, V. 10, pp. 163–170.
26. Hudak, S . J.J r . , Saxena, A . , Bucci, R. J . , Malcolm, R.C., Development of Standard Methods of Testing and Analyzing Fatigue Crack Growth Rate Data. Tech. Report AFML-TR-78-40. Westinghouse R & D Center, 1978.
27. Khertsberg, R.V., Deformatsiya i mekhanika razrusheniya konstruktsionnykh materialov [Deformation and fracture mechanics of structural materials], Moscow: Metallurgiya, 1989.
28. Smith, R.A., Miller, K.J., Prediction of fatigue regimes in notched component, Int. J. of Mech. Sc., 1978, V. 20, pp. 201–206.
29. Hammouda, M.M., Smith, R . A ., Miller, K. J., Elastic plastic fracture mechanics for initiation and propagation of notch fatigue cracks, Fat. and Fract. Eng., Material and Structure, 1979, V. 2, pp. 139–154.
30. Smi rnov, V.I ., Margolin, B.Z., Lapin, A.N., Kokhonov, V.I ., Sorokin, A.A., Issledovanie vliyaniya neitronnogo oblucheniya na vyazkost razrusheniya stali 08Kh18N10T i metalla ee svarnykh shvov [Investigation of the effect of neutron irradiation on the fracture toughness of 08Kh18N10T steel and its weld metal], Voprosy Materialovedeniya, 2011, No 1 (65), pp. 167–183.
31. Hussain, K., delos Rios, E.R. , Navarro, A., A two-stage micromechanics model for short fatigue cracks, Eng. Fract. Mech, 1993, V. 44, No 3, pp. 425–436.
32. Kishkina, S. I., Strukturnye osobennosti rosta korotkikh treshchin v vysokoprochnoy stali [Structural features of the growth of short cracks in high-strength steel], Fiziko-khimicheskaya mekhanika materialov, 1991, V. 27, No 5, pp. 48–52.
33. Dong, P., Hong, J .K. , Cao, Z., Stresses and stress intensities at notches: anomalous crack growth revisited, Int. J. of Fatigue, 2003, V. 25, No 9–11, pp. 811–825.
Review
For citations:
Smirnov V.I., Minkin A.J., Margolin B.Z., Balakin S.M. Methodical approach for studying kinetics of short and long fatigue cracks growth for irradiated reactor materials. Part 2. Сonstruction of fatique propagation rate diagram on the basis of test of precracked charpy specimens. Voprosy Materialovedeniya. 2019;(4(100)):193-205. (In Russ.) https://doi.org/10.22349/1994-6716-2019-100-4-193-205