Preview

Voprosy Materialovedeniya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

On the disperse acicular ferrite formation in the structure of cold-resistant joints under temperatures up to –70°С in MMA welding of 10KhSND steel. Part 1

https://doi.org/10.22349/1994-6716-2020-102-2-17-29

Abstract

The article presents an analysis of the metallurgical techniques that provide high quality electrodes for manual arc welding of low-carbon low-alloyed cold-resistant steels. It is shown that it is possible to improve technological and operational properties of welded joints at very low climatic temperatures up to –70°C implementing micro-alloying of the weld metal with nitrogen, titanium, cerium oxide and diamond nanopowder produced by detonation synthesis. The composition introduced into the electrode coating modifier mixture is identified. The cumulative effect of its components on the weld impact strength under temperature testing within the range from –20 up to –70°C was established. The matrix of the weld metal is composed mainly of disperse acicular ferrite, hardened by nanoparticles allegedly nitrides and carbonitrides of titanium and aluminum. It is shown that the centers for the crystallization of acicular ferrite are micro-sized non-metallic inclusions formed on ultrafine titanium nitrides. It was revealed that the toughness of the weld metal at low climatic temperatures is higher than toughness of joints welded by massively imported Japanese KOBELCO electrodes LB-52U. The results of the study make it possible to increase the cold resistance of welded structures for petrochemical plants and other facilities located in the Extreme North of the Russian Federation.
Part 2 of the article will be devoted to the study of the welding and technological properties of coated electrodes.

About the Authors

G. N. Sokolov
Volgograd State Technical University
Russian Federation

Dr Sc (Eng)

28 Lenin Ave, 400005, Volgograd



T. R. Litvinova
Volgograd State Technical University
Russian Federation
28 Lenin Ave, 400005, Volgograd


I. V. Zorin
Volgograd State Technical University
Russian Federation

Cand Sc. (Eng)

28 Lenin Ave, 400005, Volgograd



V. O. Kharlamov
Volgograd State Technical University
Russian Federation

Cand Sc. (Eng)

28 Lenin Ave, 400005, Volgograd



A. A. Artemyev
Volgograd State Technical University
Russian Federation

Cand Sc. (Eng)

28 Lenin Ave, 400005, Volgograd



F. A. Kyazimov
Volgograd State Technical University
Russian Federation
28 Lenin Ave, 400005, Volgograd


K. E. Titov
Volgograd State Technical University
Russian Federation

Cand Sc. (Eng)

28 Lenin Ave, 400005, Volgograd



References

1. Gorynin, I.V., Malyshevsky, V.A., Khlusova, E.I., Rybin, V.V., Khladostoikie stali dlya tekhnicheskih sredstv osvoeniya arkticheskogo shelfa [Cold-resistant steels for technical equipment for the development of the Arctic shelf], Voprosy Materialovedeniya, 2009, No 3, pp. 108–126.

2. Sidlin ,Z.A., Competitiveness of Russian welding electrodes, Welding International, 2017, V. 31, No 8, pp. 616–620.

3. Grabin, V.F., Metallovedenie svarki plavleniem [Metallurgy by fusion welding], Kiev: Naukova dumka, 1982.

4. Pokhodnya, I.K., Makarenko, V.D., Korsun, A.O., Milichenko, S.S., Vliyanie nikelya na strukturu i mekhanicheskie svoistva shva, vypolnennogo elektrodami s osnovnym pokrytiem [The effect of nickel on the structure and mechanical properties of a weld made with electrodes with a basic coating], Avtomaticheskaya svarka, 1986, No 2, pp. 1–5.

5. Efimenko, N.G., Primenenie redkozemelnykh metallov v pokrytiyah svarochnykh elektrodov [The use of rare earth metals in coatings of welding electrodes], Svarochnoe proizvodstvo, 1980, No 7, pp. 28–30.

6. Melnikov, V.P., Mikhaylov-Smolnyakov, M.S., Motovilina, G.D., Khlusova, E.I., Vliyanie redkozemelnyh metallov na formirovanie struktury i svoystv nizkolegirovannogo metalla shva [The effect of rare earth metals on the formation of the structure and properties of low alloy weld metal], Voprosy Materialovedeniya, 2011, No 1 (65), pp. 150–161.

7. Kashchenko, D.A., Brusnitsyn, Yu.D., Baranov, A.V., Russo, V.L., Karpov, I.G., Development of electrodes for welding transmission pipelines and marine equipment made of high-strength low-alloy cold-resistant steels, Welding International, 2017, V. 31, No 12, pp. 938–944.

8. Pu, J., Yu, S., Li, Y., Role of inclusions in flux aided backing submerged arc welding, Journal of Material Processing Technology, 2017, V. 240, pp. 145–153.

9. Moroz, A.S., Kovalev, M.A., Ob effekte metallurgicheskogo vozdeystviya kompozitsionnoy svarochnoy provoloki s chastitsami LaF3-LaBe na svoшstva i mikrostrukturu svarnykh soedineniy iz vysokoprochnoy stali [About the metallurgical effect of a composite welding wire with LaF3–LaBe particles on the properties and microstructure of welded joints from high-strength steel], Svarka i diagnostika, 2016, No 4, pp. 17–20.

10. Srinivasan, G, Bhaduri, A.K., Albert, S.K., Addition of cerium oxide in the flux formulations of a basic-coated stainless steel electrode, Welding in the World, 2013, V. 57, No 1, pp. 55–63.

11. Goldstein, M.I., Farber, V.M., Dispersion hardening of steels by nitrides, Moscow: Metallurgy, 1979.

12. Bramfitt, B.L.,Theeffectofcarbideandnitrideadditionontheheterogeneousnucleationbehavior of liquid iron, Metallurgical Transactions, 1970, No 1, pp. 1987–1995.

13. Rabinovich, A.V., Tregubenko, G.N. Bublikov, Yu.A., Razrabotka i proizvodstvo konstruktsionnykh staley s karbonitridnym uprochneniem na osnove kompleksnogo mikrolegirovaniya N-Ti-Al [Development and production of structural steels with carbonitride hardening based on complex microalloying N-Ti-Al], Metallofizika. Noveishie tekhnologii, 2012, V. 34, No 10, pp. 1385–1395.

14. Ilman, M.N., Cochrane, R.S., Evans, G.M., The development of acicular ferrite in reheated Ni-B-Al-N-type steel weld metals containing various levels of aluminum and nitrogen, Welding in the World, 2015, V. 59, No 4, pp. 565–575.

15. Sokolov, G.N., Lysak, V.I., Zorin, I.V., Artemev, A.A., Dubtsov, Yu.N., Kharlamov, V.O., Antonov, A.A., Phenomenological Model of Crystallization Center Nucleation in Metal Melt during Welding under the Influence of Ultrafine Refractory Components, Inorganic Materials: Applied Research, 2016, V. 7, No 6, pp. 884–891.

16. Sokolov, G.N., Troshkov, A.S., Lysak, V.I., Samokhin, A.V., Blagoveshchensky, Yu.V., Alekseev, N.V., Tsvetkov, Yu.V., Vliyanie nanodispersnykh karbidov WC i nikelya na strukturu i svoystva naplavlennogo metalla [The effect of nanosized WC and nickel carbides on the structure and properties of the weld metal], Svarka i diagnostika, 2011, No 3, pp. 36–38.

17. Sokolov, G.N., Lysak, V.I., Zorin, I.V., Artemev, A.A., Dubtsov, Yu.N., T r o s h k o v , A . S ., Effect of Ultrafine Components on Welded Joint Metal Properties for Metal Structure Operation at Negative Temperatures, Chemical and Petroleum Engineering, 2015, V. 51, No 3, pp. 286–290.

18. Fattahi, M., Nabhani, N., Hosseini, M., Arabian, N., Rahimi, E., Effect of Tibased inclusions on the nucleation of acicular ferrite and mechanical properties of multipass weld et al., Micron, 2013, No 45, pp. 107–114. https://doi.org/10.1016/j.micron.2012.11.004

19. Dolmatov, V.Yu., Ultradispersnye almazy detonatsionnogo sinteza: svoistva i primenenie [Ultrafine detonation synthesis diamonds: properties and applications], Uspekhi Khimii, 2001, V. 70, No 7, pp. 3–11.

20. Vereshchagin, A.A., Yurev, G.S., Struktura detonatsionnykh almazov [Detonation diamond structure], Neorganicheskie materialy, 2003, V. 39, No 3, pp. 1–7.

21. Tyryshkina, L.E., Chiganova, G.A., Abkaryan, A.K., Vliyanie nanoalmazov na mikrostrukturu nikelevyh pokrytiy [The effect of nanodiamonds on the microstructure of nickel coatings], Izvestiya vuzov. Poroshkovaya metallurgiya i funktsionalnye pokrytiya, 2014, No 2, pp. 54–58.


Review

For citations:


Sokolov G.N., Litvinova T.R., Zorin I.V., Kharlamov V.O., Artemyev A.A., Kyazimov F.A., Titov K.E. On the disperse acicular ferrite formation in the structure of cold-resistant joints under temperatures up to –70°С in MMA welding of 10KhSND steel. Part 1. Voprosy Materialovedeniya. 2020;(2(102)):17-29. (In Russ.) https://doi.org/10.22349/1994-6716-2020-102-2-17-29

Views: 324


ISSN 1994-6716 (Print)