Preview

Voprosy Materialovedeniya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Structure and properties of rails after extremely long-term operation

https://doi.org/10.22349/1994-6716-2020-102-2-30-39

Abstract

The paper reveals regularities and mechanisms of structure-phase states and properties formation of of differentially hardened 100-m rails of DT 350 category after the passed tonnage of 1411 mln. tons brutto. The formation of highly defective surface layer with nanosize (40–50 nm) grain-subgrain structure of pearlite colonies and submicrocrystal (150–250 nm) structure grains with structure free ferrite is detected. The change of hardness, microhardness, crystal lattice parameter, microdistorsion level, scalar and excess dislocation density on the rails head section are analyzed. The possible mechanisms of cementite plates’ transformation at extremely long-term operation are discussed.

About the Authors

Yu. F. Ivanov
Institute of High Current Electronics SB RAS
Russian Federation

Dr Sc. (Phys-Math)

2/3 Akademichesky, 634055, Tomsk



V. E. Gromov
Siberian State Industrial University
Russian Federation

Dr Sc. (Phys-Math)

42 Kirova St, 654007 Novokuznetsk



V. E. Kormyshev
Siberian State Industrial University
Russian Federation

Cand. Sc. (Eng)

42 Kirova St, 654007 Novokuznetsk



A. M. Glezer
Institute of Metal Science and Physical Metallurgy, Central Research Institute of Ferrous Metallurgy named after I.P. Bardin
Russian Federation

Dr Sc. (Phys-Math)

9/23 2nd Baumanskaya St, 105005, Moscow



References

1. Gromov, V.E., Peregudov, O.A., Ivanov, Yu.F., Konovalov, S.V., Yuriev, A.A.,Evoliutsiyastrukturno-fazovykhsostoyanymetallarelsovpridlitelnoyekspluatatsii[Evolutionof structural-phase states of rails metal during long-term operation], Novosibirsk: SORAN, 2017.

2. Gromov, V.E., Ivanov, Yu.F., Yuriev, A.B., Morozov, K.V., Microstructure of quenched rails, Cambridge: CISP, 2016.

3. Ivanov, Yu.F., Gromov, V.E., Yuriev, A.A., et al. Priroda poverkhnostnogo uprochneniya differentsirovanno zakalennykh relsov pri dlitelnoy ekspluatatsii [The nature of surface hardening of differentially hardened rails during long-term operation], Deformatsiya i razrushenie materialov, 2018, No 4, pp. 67–85.

4. Ivanov, Yu.F., Gromov, V.E., Yuriev, A.A., et al., Gradienty struktury i svoistv poverkhnostnykh sloev differentsirovanno zakalennykh relsov posle dlitelnoy ekspluatatsii [Gradients of the structure and properties of surface layers of differentially hardened rails after long-term operation], Fundamentalnye problemy sovremennogo materialovedeniya, 2017, V. 14, No 3, pp. 297–305.

5. Ivanov, Yu.F., Yuriev, A.A., Gromov, V.E. et al., Preobrazovanie karbidnoy fazy relsov pri dlitelnoy ekspluatatsii [Transformation of the carbide phase of rails during long-term operation], Izvestiya vuzov. Chernaya metallurgiya, 2018, V. 61, No 2, pp. 140–148.

6. Gromov, V.E., Yuriev, A.A., Ivanov, Yu.F., et al., Evoliutsiya struktury i svoistv differentsirovanno zakalennykh relsov v protsesse dlitelnoy ekspluatatsii [The evolution of the structure and properties of differentially hardened rails during long-term operation], Metallofizika i noveishie tekhnologii, 2017, V. 39, No 12, pp. 1599–1646.

7. Gromov, V.E., Yuriev, A.A., Ivanov, Yu.F., et al., Transformatsiya struktury 100-metrovykh differentsirovanno zakalennykh relsov pri dlitelnoy ekspluatatsii [Transformation of the structure of 100-meter differentially hardened rails during long-term operation], Fundamentalnye problemy sovremennogo materialovedeniya, 2018, V. 15, No 1, pp. 128–134.

8. Egerton, F.R., Physical Principles of Electron Microscopy, Basel: Springer International Publishing, 2016.

9. Transmission Electron Microscopy. Characterization of Nanomaterials, Kumar, Ch.S.S.R., (Ed.), New York: Springer, 2014.

10. Carter, C.B., Williams, D.B., Transmission Electron Microscopy, Berlin: Springer International Publishing, 2016.

11. Utevsky, L.M., Difraktsionnaya elektronnaya mikroskopiya v metallovedenii [Diffraction electron microscopy in metal science], Moscow: Metallurgiya, 1973.

12. Tomas, G., Gorindzh, M.Dzh., Prosvechivayushchaya elektronnaya mikroskopiya materialov [Transmission electron microscopy of materials], Moscow: Nauka, 1983.

13. Hirsh P., Hovi A., Nikolson R. et al. Elektronnaya mikroskopiya tonkikh kristallov [Electron microscopy of thin crystals], Moscow: Mir, 1968.

14. Koneva, N.A., Kozlov, E.V., Trishkina, L.I., Lychagin, D.V., Dalnodeistvuyushchie polya napryazheniy, krivizna-kruchenie kristallicheskoi reshetki i stadii plasticheskoi deformatsii. Metody izmereniy i rezultaty [Long-range stress fields, curvature-torsion of the crystal lattice and stages of plastic deformation. Measurement methods and results], Proceedings of the international conference on the new methods in physics and mechanics of a deformable solid, Tomsk: TGU, 1990, pp. 83–93.

15. Koneva, N.A., Kozlov, E.V., Priroda substrukturnogo uprochneniya [The nature of substructural hardening], Izvestiya vuzov: Fizika, 1982, No 8, pp. 3–14.

16. Gorelik, S.S., Skakov, Yu.A., Rastorguev, L.N., Rentgenograficheskij i elektronno-opticheskij analiz [X-ray and electron-optical analysis]: Textbook for universities. 3rd ed., MISIS, 1994.

17. Gavriljuk, V.G., Effect of interlamellar spacing on cementite dissolution during wire drawing of pearlitic steel wires, Scripta Mater., 2001, V. 45, pp. 1469–1472.

18. Li, Y.J., Chai, P., Bochers, C., Westerkamp, S., Goto, S., Raabe, D., Kirchheim, R., Atomic-scale mechanisms of deformation-induced cementite decomposition in pearlite, Acta Mater., 2011, V. 59, pp. 3965–3977.

19. Gavriljuk, V.G., Decomposition of cementite in pearlitic steel due to plastic deformation, Mater. Sci. and Eng. A., 2003, V. 345, pp. 81–89.


Review

For citations:


Ivanov Yu.F., Gromov V.E., Kormyshev V.E., Glezer A.M. Structure and properties of rails after extremely long-term operation. Voprosy Materialovedeniya. 2020;(2(102)):30-39. (In Russ.) https://doi.org/10.22349/1994-6716-2020-102-2-30-39

Views: 316


ISSN 1994-6716 (Print)