Preview

Voprosy Materialovedeniya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

High-cycle fatigue of a metal matrix composite based on an aluminum alloy 7075-T1 reinforced with silicon carbide particles

https://doi.org/10.22349/1994-6716-2020-102-2-131-140

Abstract

The article presents results of the fatigue strength study of a metal matrix composites based on an aluminum alloy of the 7075-T1 grade, containing 20 vol.% silicon carbide obtained by powder technology using mechanical alloying followed by hot pressing. The high-cycle fatigue (HCF) study was carried out at five levels of stress amplitude at room temperature and at four levels of stress amplitude at high temperature (100°C). Smooth samples of corset type with a circular cross section were manufactured in accordance with the requirements of GOST 25.502–79. Synthesized samples went through the heat treatment stage characteristic of the matrix aluminum alloy 7075. Spherical particles within the range from 5 to 70 μm served as the raw material for the initial matrix of the composite material, and the raw material for the reinforcing component were silicon carbide powder particles, which after a long mechanical alloying with matrix particles take the form of granules from 400 to 600 microns.

The study of fatigue characteristics led to the conclusion that the introduction of a 20% reinforcing phase into the 7075-T1 matrix alloy based on silicon carbide particles made it possible to achieve a 1.3 times increase in endurance limits based on 2·107 cycles. An increase in the test temperature (100°C) leads to a decrease of 8% in the endurance limit. The change in the values of progressive deformation and resonance frequency during testing at room and high temperatures (100°C) is considered. At room temperature, it was found that with increasing durability, progressive deformation accumulates. At high temperature (100°C), it was found that with a decrease in durability, resonance frequency decreases more pronouncedly at each stress level.

About the Authors

M. A. Gorbovets
Federal State Unitary Enterprise “All-Russian Scientific Research Institute of Aviation Materials” (FSUE “VIAM”)
Russian Federation

Cand Sc. (Eng)

17 Radio St, 105005 Moscow



D. V. Kosolapov
Federal State Unitary Enterprise “All-Russian Scientific Research Institute of Aviation Materials” (FSUE “VIAM”)
Russian Federation
17 Radio St, 105005 Moscow


P. V. Ryzhkov
Federal State Unitary Enterprise “All-Russian Scientific Research Institute of Aviation Materials” (FSUE “VIAM”)
Russian Federation
17 Radio St, 105005 Moscow


References

1. Kablov, E.N., Materialy novogo pokoleniya – osnova innovatsiy, tekhnologicheskogo liderstva i natsionalnoy bezopasnosti Rossii [Materials of a new generation the basis of innovation, technological leadership and national security of Russia], Intellekt i tekhnologii, 2016, No 2 (14), pp. 16–21.

2. Kablov, E.N., Tendentsii i orientiry innovatsionnogo razvitiya Rossii [Tendencies and guidelines for innovative development of Russia]: Collection of scientific information materials, 3rd edition, Moscow: VIAM, 2015.

3. Kablov, E.N., Ospennikova, O.G., Lomberg, B.S., Sidorov, V.V., Prioritetnye napravleniya razvitiya tekhnologiy proizvodstva zharoprochnykh materialov dlya aviatsionnogo dvigatelestroeniya [Priority areas for the development of technologies for the production of heat-resistant materials for aircraft engine manufacturing], Problemy chernoy metallurgii i materialovedeniya, 2013, No 3, pp. 47–54.

4. Kablov, E.N.,InnovatsionnyerazrabotkiVIAMporealizatsii“Strategicheskikhnapravleniirazvitiya materialov i tekhnologii ikh pererabotki na period do 2030 goda” [Innovative developments of the AllRussian Scientific Research Institute of Aviation Materials within the project “Strategic development of materials and technologies of their recycling up to 2030”], Aviatsionnye materialy i tekhnologii, 2015, No 1 (34), pp. 3–33, DOI: 10.18577/2071-9140-2015-0-1-3-33.

5. Lutsenko, A.N., Slavin A.V., Erasov, V.S., Khvatsky, K.K., Prochnostnye ispytaniya i issledovaniya aviatsionnykh materialov [Strength testing and research of aviation materials], Aviatsionnye materialy i tekhnologii, 2017, No S, pp. 527–546. DOI:/10.18577/2071-9140-2017-0-S-527-546.

6. Gorbovets, M.A., Slavin, A.V., Dokazatelstvo sootvetstviya materiala trebovaniyam ch. 33 aviatsionnykh pravil [Proof of compliance with the requirements of part 33 of the aviation regulations], Aviatsionnye materialy i tekhnologii, 2018, No 3, pp. 89–94. DOI:/10.18577/2071-9140-2018-0-3-89-94.

7. Berezovsky, V.V., Shavnev, A.A., Lomov, S.B., Kurganova, Yu.A., Poluchenie i analiz struktury dispersno-uprochnennykh kompozitsionnykh materialov sistemy Al–SiC s razlichnym soderzhaniem armiruyushchey fazy [Obtaining of the data and analysis of the structure of dispersive strengthened composite materials of the Al – SiC system with different contents of the reinforcing phase], Aviatsionnye materialy i tekhnologii, 2014, No S6, pp. 17–23. DOI: 10.18577/2071-9140-2014-0-s6-17-23.

8. Grashchenkov, D.V., Strategiya razvitiya nemetallicheskikh materialov, metallicheskikh kompozitsionnykh materialov i teplozashchity [Development strategy for non-metallic materials, metal composite materials and thermal protection], Aviatsionnye materialy i tekhnologii, 2017, No S, pp. 264–271. DOI: 10.18577/2071-9140-2017-0-S-264-271.

9. Kablov, E.N., Shchetanov, B.V., Grashchenkov, D.V., Shavnev, A.A., Niafkin, A.N., Metallomatrichnye kompozitsionnye materialy na osnove Al–SiC [Al – SiC based metal matrix composites], Aviatsionnye materialy i tekhnologii, 2012, No S, pp. 373–380.

10. Kablov, E.N., Grashchenkov, D.V., Shchetanov, B.V., Shavnev, A.A., Al–SiCbased metal matrix composites for power electronic devices, Composites: Mechanics, Computations, Applications, 2013, V. 4, No 1, pp.65–74.

11. Polmear, I.J.,LightAlloys:MetallurgyoftheLightMetals,JohnWiley&Sons,Australia,1995.

12. Cottu, J.-P., Couderc, J.-J., Viguier, B., Bernard, L., Influence of SiC reinforcement on precipitation and hardening of a metal matrix composite, Journal of Materials Science, 1992, V. 27., No. 11, pp. 3068–3074.

13. Belyaev, M.S., Gorbovets, M.A., Ryzhkov, P.V., Soprotivlenie ustalosti zharoprochnykh nikelevykh splavov, poluchennykh selektivnym lazernym splavleniem [Fatigue resistance of heatresistant nickel alloys obtained by selective laser fusion], Aviatsionnye materialy i tekhnologii, 2016, No 3 (52). DOI: doi.org/ 10.18577/2071-9140-2018-0-3-50-55.

14. Gorbovets, M.A., Khodinev, I.A., Ryzhkov, P.V., Oborudovanie dlya provedeniya ispytaniy na malotsiklovuyu ustalost pri zhestkom tsikle nagruzheniya [Equipment for low-cycle fatigue testing during a hard loading cycle], Trudy VIAM, 2018. No 9, article 6. URL: http://www.viam-works.ru (reference date 10/02/2020).

15. Stepnov, M.N., Statisticheskie metody obrabotki rezultatov mekhanicheskikh ispytaniy [Statistical methods for processing the results of mechanical tests], Moscow: Mashinostroenie, 1985.

16. Turkova, V.A., Inkrementalny analiz dvukhosnogo nagruzheniya plastiny s krugovym otverstiyem: prisposobliaemost, znakoperemennaya plastichnost i retcheting [Incremental analysis of biaxial loading of a plate with a circular hole: adaptability, alternating plasticity and ratcheting.], Vestnik SamGU, (Samara State University), 2015, No 3 (125), pp. 106–124.

17. Erasov, V.S., Nuzhny, G.A., Grinevich, A.V., Terekhin, A.L., Treshchinostoykost aviatsionnykh materialov v protsesse ispytaniy na ustalost [Crack resistance of aviation materials during fatigue tests], Trudy VIAM, 2013, No 10, article 6. URL: http://www.viam-works.ru (reference date 10/02/2020).


Review

For citations:


Gorbovets M.A., Kosolapov D.V., Ryzhkov P.V. High-cycle fatigue of a metal matrix composite based on an aluminum alloy 7075-T1 reinforced with silicon carbide particles. Voprosy Materialovedeniya. 2020;(2(102)):131-140. (In Russ.) https://doi.org/10.22349/1994-6716-2020-102-2-131-140

Views: 336


ISSN 1994-6716 (Print)