Preview

Voprosy Materialovedeniya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Strength assessment of austenitic steel grain boundaries by impact bending tests for miniature specimens

https://doi.org/10.22349/1994-6716-2020-102-2-164-173

Abstract

The paper proposes methods for assessing the strength of grain boundaries according to the results of testing miniature specimens by impact bending. Results of bending at low temperature are given to assess the strength of grain boundaries in austenitic chromium-nickel steels. The test temperature was determined when the proportion of brittle intergranular fracture of embrittled chromium-nickel steel 10Kh18N9 is at least 90%. Three types of miniature specimens of different geometric shapes have been developed, providing approximately the same absorbed energy when tested for impact bending. It is shown when it is necessary to use such miniature specimens.

About the Authors

B. Z. Margolin
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

Dr Sc. (Eng)

49 Shpalernaya St, 191015 St Petersburg



A. M. Morozov
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

Cand Sc. (Eng)

49 Shpalernaya St, 191015 St Petersburg



N. E. Pirogova
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation
49 Shpalernaya St, 191015 St Petersburg


M. N. Grigoriev
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation
49 Shpalernaya St, 191015 St Petersburg


References

1. Margolin, B.Z., Shvetsova, V.A., Prokoshev, O.Yu., et al., Kharakteristiki antikorrozionnoy naplavki dlya rascheta soprotivleniya khrupkomu razrusheniyu materiala korpusa reaktora [Characteristics of anticorrosive surfacing for calculating the resistance to fragile fracture of the material of the reactor vessel], Voprosy Materialovedeniya, 2005, No 2 (42), pp. 186–213.

2. Kursevich, I.P., Margolin, B.Z., Prokoshev, O.Yu., et al., Vliyanie dlitelnogo temperaturnogo vozdeystviya na mekhanicheskie svoystva i strukturu austenitnoy stali Kh18N9 i metalla svarnykh shvov [The effect of prolonged temperature exposure on the mechanical properties and structure of Kh18N9 austenitic steel and weld metal], Voprosy Materialovedeniya, 2012, No 3, pp. 109–125.

3. Brayent, K.L., Benerdzhi, S.K., et al., Okhrupchivanie konstruktsionnykh staley i splavov [Embrittlement of structural steels and alloys], Moscow: Metallurgiya, 1988.

4. Horak, J.A., Sikka, V.K., Raske, D.T., Review of effects of long-term aging on the mechanical properties and microstructures of types 304 and 316 stainless steel, Proc. of International conference on nuclear power plant aging, availability factor and reliability analysis, San Diego, CA, 1983, pp. 301–313.

5. Kadmar, M.Kh., Zhidkometallicheskoe okhrupchivanie [Liquid embrittlement], Trans. and ed. by Brayent, K.L., Benerdzhi, S.K., Moscow: Metallurgiya, 1988.

6. Margolin, B.Z., Kursevich, I.P., Sorokin, A.A., Neustroev, V.S., FCC-to-BCC phase transformation in austenitic steels for WWER internals with significant swelling, Proc. of 7th Intern. Symp. on Contribution of Materials Investigation to Improve the Safety and Performance of LWRs, France, Fontevraud, 2010, A097-T02.

7. Trinkaus, H., Ullmaier, H., High temperature embrittlement of metals due to helium: is the lifetime dominated by cavity growth or crack growth, J. Nucl. Mater., 1994, No 212–215, Part 1, pp. 303–309.

8. Nogami, S., Hasegawa, A., Tanno, T., et. al., High-Temperature Helium Embrittlement of 316FR Steel, Journal of Nuclear Science and Technology, 2011, pp. 130–134.

9. Henry, J., Vincent, L., Averty, X., Marini, B., Jung, P., Effect of a high helium content on the flow and fracture properties of a 9Cr martensitic steel, J. Nucl. Mater., 2007, No 367–370, Part A, pp. 411–416.

10. Miura, T., Fujii, K., Fukuya, K., Micro-mechanical investigation for effects of helium on grain boundary fracture of austenitic stainless steel, J. Nucl. Mater, 2015, No 457, pp. 279–290.

11. Fukuya, K., Current understanding of radiation-induced degradation in light water reactor structural materials, Journal of Nuclear Science and Technology, 2013, No 50 (3), pp. 213–254.

12. Fujimoto, K., Yonezawa, T., Wachi, E., et al., Effect of the Accelerated Irradiation and Hydrogen/Helium Gas on IASCC Characteristics for Highly Irradiated Austenitic Stainless Steels, Proc. 12th International Conference on Environmental Degradation of Materials in Nuclear Power Systems, Water Reactors, PA, 2005, pp. 299–310.

13. Ernestova, M., Burda, J., Kocik, J., et al., Influence of the Neutron Spectrum on the Sensitivity to IASCC and Microstructure of CW 316 Material, Proc. of the 8th International Symposium Fontevraud 8, Contribution of Materials Investigations and Operating Experience to LWRs Safety, Performance and Reliability, SFEN, 2014.

14. Gusev, M.N., Maksimkin, O.P., Garner, F.A., Peculiarities of plastic flow involving “deformation waves” observed during low temperature tensile tests of highly irradiated 12Cr18Ni10Ti and 08Cr16Ni11Mo3 steels, J. Nucl. Mater, 2010, No 403, pp. 121–125.

15. Ruban, S.V., Maksimkin, O.P., Izmenenie fiziko-mekhanicheskikh svoystv austenitnoy khromonikelevoy nerzhaveyushchey stali KH18N9 (AISI 304), obluchennoy neytronami i deformiruyemoy pri otritsatelnykh temperaturakh [Change in the physicomechanical properties of austenitic chromium-nickel stainless steel Kh18N9 (AISI 304) irradiated with neutrons and deformable at low temperatures], Herald of the National Nuclear Center of Kazakhstan, 2015, No 1, pp. 5–9.

16. F r i d m a n , Y a . B ., Mekhanicheskie svoystva metallov, Deformatsiya i razrushenie [Mechanical properties of metals, deformation and fracture], Moscow: Mashinostroenie, 1974.

17. Fukuya, K., Nishioka, H., Fujii, K., Kamaya, M., Miura, T., Torimaru, T., Fracture behavior of austenitic stainless steels irradiated in PWR, J. Nucl. Mat., 2008, No 378, pp. 2011–2019.


Review

For citations:


Margolin B.Z., Morozov A.M., Pirogova N.E., Grigoriev M.N. Strength assessment of austenitic steel grain boundaries by impact bending tests for miniature specimens. Voprosy Materialovedeniya. 2020;(2(102)):164-173. (In Russ.) https://doi.org/10.22349/1994-6716-2020-102-2-164-173

Views: 296


ISSN 1994-6716 (Print)