

Mechanisms of stress corrosion cracking of irradiated austenitic chromium-nickel steels used for WWER and PWR vessel internals
https://doi.org/10.22349/1994-6716-2020-102-2-174-199
Abstract
Keywords
About the Authors
B. Z. MargolinRussian Federation
Dr Sc. (Eng)
49 Shpalernaya St, 191015 St Petersburg
N. E. Pirogova
Russian Federation
49 Shpalernaya St, 191015 St Petersburg
A. A. Sorokin
Russian Federation
Cand Sc. (Eng)
49 Shpalernaya St, 191015 St Petersburg
V. I. Kokhonov
Russian Federation
49 Shpalernaya St, 191015 St Petersburg
References
1. Piminov, V.A., Evdokimenko, V.V., Nadezhnost na ves srok ekspluatatsii [Lifetime reliability], Rosenergoatom, 2015, No 2, pp. 16–19.
2. Karzov, G.P., Margolin, B.Z., Osnovnye mekhanizmy radiatsionnogo povrezhdeniya materialov VKU i materialovedcheskie problemy ikh dlitelnoy ekspluatatsii [The main mechanisms of radiation damage to materials of pressure vessels internals and materials science problems of their long-term operation], Rosenergoatom, 2015, No 2, pp. 8–15.
3. Scott, P., A review of irradiation assisted stress corrosion cracking, J. Nucl. Mater, 1994, No 211, pp. 101–122.
4. Ehrnsten, U., Pakarinen, J., Karlsen, W., et al., Investigations on core basket bolts from a VVER 440 power plant, Engineering Failure Analysis, 2013, No 33, p. 55–65.
5. Andresen, P.L., Was, G.S., A historical perspective on understanding IASCC, J. Nucl. Mater, 2019, No 517, pp. 380–392.
6. Pokor, C., Toivonen, A., Wintergerst, M., et al., Determination of the time to failure curve as a function of stress for a highly irradiated AISI 304 stainless steel after constant load tests in simulated PWR water environment, Proceedings of Fontevraud 7 Conference “Contribution of Materials Investigations to Improve the Safety and Performance of LWRs”, Avignon, France, 2010, O3-A008-T2.
7. Tanguy, B., Pokor, C., Stern, A., Bossis, P., Initiation stress threshold irradiation assisted stress corrosion cracking criterion assessment for core internals in PWR environment, Proceedings of the ASME 2011 Pressure Vessels & Piping Division Conference, Baltimore, Maryland, 2011, PVP2011-58051.
8. Gerard, R., Pokor, C., Internal Components: Design and Main Ageing Mechanisms, Soteria Training Symposium on Irradiation Effects in Structural Materials for Nuclear Reactors, Seville, 2012.
9. Nishioka, H., Fukuya, K., Fujii, K., Torimaru, T., IASCC Initiation in Highly Irradiated Stainless Steels under Uniaxial Constant Load Conditions, Journal of Nuclear Science and Technology, 2008, V. 45, No 10, pp. 1072–1077.
10. Toivonen, A., Aaltonen, P., Karlsen, W., Post-irradiation SCC investigations on highly irradiated core internals component materials, Proceedings of Fontevraud 6 Conference “Contribution of Materials Investigations to Improve the Safety and Performance of LWRs”, Royal Abbey, 2006.
11. Takakura, K., Nakata, K., Kubo, N., Fujimoto, K., Sakima, K., IASCC Evaluation Method of Irradiated Cold Worked, 316SS Baffle Former Bolt in PWR Primary Water, Proc. of the ASME Pressure Vessels and Piping Division Conference PVR 2009, Prague, 2009, PVP2009-77279.
12. Freyer, P., Mager, T., Burke, M., Hot cell crack initiation testing of serious heats of highly irradiated 316 stainless steel components obtained from three commercial PWRs, Proc. of 13th Intern. Conf. on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, Canada, 2007.
13. Margolin, B.Z., Sorokin, A.A., Pirogova, N.E., et al., Analysis of mechanisms inducing corrosion cracking of irradiated austenitic steels and development of a model for prediction of crack initiation, Engineering Failure Analysis, 2020, V. 107 (104235), pp. 1–20.
14. Hojna, A., Ernestova, M., Hietanen, O., et al., Irradiation assisted stress corrosion cracking of austenitic stainless steel WWER reactor core internals, 15th International Conference on Environmental Degradation, TMS, 2011, pp. 1257–1272.
15. Fukuya, K., Current understanding of radiation-induced degradation in light water reactor structural materials, Journal of Nuclear Science and Technology, 2013, V. 50, No 3, pp. 213–254.
16. Chen, Y., Rao, A.S., Soppet, W., et al., Cracking susceptibility of irradiated stainless steels in a simulated PWR environment, 22nd Conference on Structural Mechanics in Reactor Technology, San Francisco, California, 2013.
17. Stephenson, K.J., Was, G.S., Crack initiation behavior of neutron irradiated model and commercial stainless steels in high temperature water, J. Nucl. Mater, 2014, V. 444 (1–3), pp. 331–341.
18. Bailat, C., Almazouzi, A., Baluc, N., et al., The effects of irradiation and testing temperature on tensile behaviour of stainless steels, J. Nucl. Mater, 2000, V. 283–287, pp. 446–450.
19. Bosch, R.W., Vankeerberghen, M., Gerard, R., Crack initiation testing of thimble tube material under PWR conditions to determine a stress threshold for IASCC, J. Nucl. Mater, 2015, V. 461, pp. 112–121.
20. Conermann, J., Shogan, R., Fujimoto, K., Yonezawa, T., Tamaguchi, Y., Irradiation effects in a highly irradiated cold worked stainless steel removed from a commercial PWR, Proc. of 12th Int. Conf. on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, USA, 2005, pp. 277–287.
21. Pogodin, V.P., Bogoyavlensky, V.L., Sentyurev, V.P., Mezhkristallitnaya korroziya i korrozionnoe rastreskivanie nerzhaveyushchikh staley v vodnykh sredakh [Intergranular corrosion and corrosion cracking of stainless steels in aqueous environment], Moscow: Atomizdat, 1970.
22. Scott, P.M., Environment-assisted cracking in austenitic components, Intern. J. Pressure Vessel and Piping, 1996, V. 65, pp. 255–264.
23. Massoud, J.-P., Zamboch, M., Brabec, P., et al., Influence of the Neutron Srectrum on the Tensile Properties of Irradiated Austenitic Stainless Steels, in Air and in PWR Environment, Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power SystemWater Reactors, Snowbird, UT, 2005.
24. Ernestova, M., Burda, J., Kocik, J., et al., Influence of the Neutron Spectrum on the Sensitivity to IASCC and Microstructure of CW 316 Material, Proc. of the 8th International Symposium Fontevraud 8, Contribution of Materials Investigations and Operating Experience to LWRs Safety, Performance and Reliability; SFEN, 2014.
25. Gurovich, B.A., Kuleshova, E.A., Frolov, A.S., et al., Investigation of high temperature annealing effectiveness for recovery of radiation-induced structural changes and properties of 18Cr–10Ni–Ti austenitic stainless steels, J. Nucl. Mater, 2015, V. 465, pp. 565–581.
26. Margolin, B.Z., Pirogova, N.E., Potapova, V.A., Sorokin, A.A., Bardashova, N.V., Petrov, S.N., Mikhailov, M.S., Issledovanie mekhanizmov korrozionnogo rastreskivaniya stali dlya VKU VVER na osnove imitatsionnykh ispytaniy [Investigation of the mechanisms of corrosion stress cracking of steel for PVI WWER based on simulation tests], Voprosy Materialovedeniya, 2017, No 4 (92), pp. 193–218.
27. Busby, J.T., Was, G.S., Kenik, E.A., Isolating the effect of radiation-induced segregation in irradiation-assisted stress corrosion cracking of austenitic stainless steels, J. Nucl. Mater, 2002, V. 302, pp. 20–40.
28. Little, E.A., Fracture mechanics evaluations of neutron irradiated type 321 austenitic steel, J. Nucl. Mater, 1986, V. 139, pp. 261–276.
Review
For citations:
Margolin B.Z., Pirogova N.E., Sorokin A.A., Kokhonov V.I. Mechanisms of stress corrosion cracking of irradiated austenitic chromium-nickel steels used for WWER and PWR vessel internals. Voprosy Materialovedeniya. 2020;(2(102)):174-199. (In Russ.) https://doi.org/10.22349/1994-6716-2020-102-2-174-199