

Evaluation of resistance to corrosion cracking of irradiated austenitic chromium-nickel steels by impact bending tests on miniature specimens
https://doi.org/10.22349/1994-6716-2020-102-2-200-215
Abstract
Keywords
About the Authors
B. Z. MargolinRussian Federation
Dr Sc. (Eng)
49 Shpalernaya St, 191015 St Petersburg
N. E. Pirogova
Russian Federation
49 Shpalernaya St, 191015 St Petersburg
A. A. Sorokin
Russian Federation
Cand Sc. (Eng)
49 Shpalernaya St, 191015 St Petersburg
A. M. Morozov
Russian Federation
Cand Sc. (Eng)
49 Shpalernaya St, 191015 St Petersburg
References
1. Margolin, B.Z., Sorokin, A.A. Pirogova, N.E., et al., Analysis of mechanisms inducing corrosion cracking of irradiated austenitic steels and development of a model for prediction of crack initiation, Engineering Failure Analysis, 2020, V. 107 (104235), pp. 1–20.
2. Fukuya, K., Nishioka, H., Fujii, K., Fracture behavior of austenitic stainless steels irradiated in PWR, J. Nucl. Mater, 2008, V. 378, pp. 211–219.
3. Sorokin, A.A., Margolin, B.Z., Kursevich, I.P., et al., Effect of neutron irradiation on tensile properties of materials for pressure vessel internals of WWER type reactors, J. Nucl. Mater, 2014, V. 444, pp. 373–384.
4. Miura, T., Fujii, K., Fukuya, K., Micro-mechanical investigation for effects of helium on grain boundary fracture of austenitic stainless steel, J. Nucl. Mater, 2015, V. 457, pp. 279–290.
5. Fujimoto, K., Yonezawa, T., Wachi, E., et al., Effect of the Accelerated Irradiation and Hydrogen/Helium Gas on IASCC Characteristics for Highly Irradiated Austenitic Stainless Steels, Proc. 12th International Conference on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, PA, 2005, pp. 299–310.
6. Boothby, R.M., Radiation effects in nickel-based alloys, Comprehensive Nucl. Mater, 2012, V. 4, pp. 123–150.
7. Judge, C.D., Gauquelin, N., Walters, L., et al., Intergranular fracture in irradiated Inconel X-750 containing very high concentrations of helium and hydrogen, J. Nucl. Mater, 2015, V. 457, pp. 165– 172.
8. Stoller, R.E., Maziasz, P.J., Rowcliffe, A.F., Tanaka, M.P., Swelling behavior of austenitic stainless steels in a spectrally tailored reactor experiment: Implications for near-term fusion machines, J. Nucl. Mater, 1988, V. 155–157, pp. 1328–1334.
9. Brayent, K.L., Benerdzhi, S.K., et al., Okhrupchivanie konstruktsionnykh staley i splavov [Embrittlement of structural steels and alloys], Moscow: Metallurgiya, 1988.
10. Gusev, M.N., Maksimkin, O.P., Garner, F.A., Peculiarities of plastic flow involving “deformation waves” observed during low-temperature tensile tests of highly irradiated 12Cr18Ni10Ti and 08Cr16Ni11Mo3 steels, J. Nucl. Mater, 2010, V. 403, pp. 121–125.
11. Trinkaus, H., Ullmaier, H., High temperature embrittlement of metals due to helium: is the lifetime dominated by cavity growth or crack growth?, J. Nucl. Mater, 1994, V. 212–215, Part 1, pp. 303–309.
12. Scott, P.A., review of irradiation assisted stress corrosion cracking, J. Nucl. Mater, 1994, V. 211, pp. 101–122.
13. Margolin, B.Z., Sorokin, A.A., Smirnov, V.I., et al., Physical and mechanical modelling of neutron irradiation effect on ductile fracture. Part 1. Prediction of fracture strain and fracture toughness of austenitic steels, J. Nucl. Mater, 2014, V. 452, pp. 595–606.
Review
For citations:
Margolin B.Z., Pirogova N.E., Sorokin A.A., Morozov A.M. Evaluation of resistance to corrosion cracking of irradiated austenitic chromium-nickel steels by impact bending tests on miniature specimens. Voprosy Materialovedeniya. 2020;(2(102)):200-215. (In Russ.) https://doi.org/10.22349/1994-6716-2020-102-2-200-215