

Local texture analysis of structure non-uniformity in low carbon high-strength steel after direct quenching
https://doi.org/10.22349/1994-6716-2020-103-3-09-16
Abstract
About the Authors
A. A. ZismanRussian Federation
Dr Sc. (Phys-Math)
49 Shpalernaya St, 191015, St Petersburg
29 Polytekhnicheskaya St, 195251, St Petersburg
N. Yu. Zolotorevsky
Russian Federation
Cand Sc. (Phys-Math)
29 Polytekhnicheskaya St, 195251, St Petersburg
S. N. Petrov
Russian Federation
Cand Sc. (Chem)
49 Shpalernaya St, 191015, St Petersburg
29 Polytekhnicheskaya St, 195251, St Petersburg
E. I. Khlusova
Russian Federation
Dr Sc. (Eng)
49 Shpalernaya St, 191015, St Petersburg
29 Polytekhnicheskaya St, 195251, St Petersburg
E. A. Yashina
Russian Federation
49 Shpalernaya St, 191015, St Petersburg
References
1. Garcia De Andres, C., Bartolome, M.J., Capdevila, C., et al., Metallographic techniques for the determination of the austenite grain size in medium-carbon microalloyed steels, Materials Characterization, 2001, No 35, pp. 389–398.
2. Cayron, C., Artaud, B., Briottet, L., Reconstruction of parent grains from EBSD data, Materials Characterization, 2006, 57, Issues 4–5, pp. 386–401.
3. Zisman, A.A., Kolomoets, D.R., Zolotorevsky, N.Yu., Petrov, S.N., Extraction of prior grain boundaries from interfaces of martensite based on particular statistics for inter-variant disorientations, Letters on Materials, 2018, No 8 (4), pp. 448–453.
4. Zolotorevsky, N.Yu., Zisman, A.A., Panpurin, S.N., et al., Effect of the Grain Size and Deformation Substructure of Austenite on the Crystal Geometry of Bainite and Martensite in Low-Carbon Steels, Metal Science and Heat Treatment, (2014), V. 55, pp. 550–558.
5. Morris, J.W., On the Ductile-Brittle Transition in Lath Martensitic Steel, ISIJ International, 2011, No 51 (10), pp. 1569–1575.
6. Bernier, N., Bracke, L., Malet, L., Godet, S., Crystallographic Reconstruction Study of the Effects of Finish Rolling Temperature on the Variant Selection During Bainite Transformation in C–Mn High-Strength Steels, Metallurgical and Materials Transactions A, 2014, No 45, pp. 5937–5955.
7. Jonas, J.J., Transformation Textures Associated With Steel Processing, Microstructure and Texture in Steels, New York: Springer, 2009, pp. 3–17.
8. Zolotorevsky, N., Kazakova, E., Kazakov, A., Petrov, S., Panpurin, S., Investigation of the Origin of Coarse-Grained Bainite in X70 Pipeline Steels by EBSD Technique, Materials Performance and Characterization, 2017, V. 6, No 3, pp. 281–291.
9. Bhadeshia, H., Honeycombe, R., Steel microstructure and properties, Amsterdam: Elsevier, 2006.
10. Cayron, C., Baur, A., Loge, R., Intricate morphologies of laths and blocks in low-carbon martensitic steels, Materials and Design, 2018, No 154, pp. 81–95.
11. Bain, E.C., The Nature of Martensite, Trans. AIME, 1924, V. 70, pp. 25–35.
12. Bunge, H.-J., Texture Analysis in Materials Science, Butterworths, 1982.
13. Bachmann, F., Hielscher, R., Schaeben, H., Grain detection from 2d and 3d EBSD data – Specification of the MTEX algorithm, Ultramicroscopy, 2011, No 111, pp. 1720–1733.
Review
For citations:
Zisman A.A., Zolotorevsky N.Yu., Petrov S.N., Khlusova E.I., Yashina E.A. Local texture analysis of structure non-uniformity in low carbon high-strength steel after direct quenching. Voprosy Materialovedeniya. 2020;(3(103)):9-16. (In Russ.) https://doi.org/10.22349/1994-6716-2020-103-3-09-16