Preview

Voprosy Materialovedeniya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Hardening mechanisms for rails metal during long-term operation

https://doi.org/10.22349/1994-6716-2020-103-3-17-28

Abstract

A quantitative comparative analysis of the mechanisms of hardening of the surface layers of differentially hardened 100-m rails is carried out. It was based on structure formation, phase composition, defect substructure regularities revealed by the methods of modern physical materials science. The studies were carried out at different depths of up to 10 mm in the rail head along the central axis and along the axis of symmetry of the fillet in the initial state and after various periods of extremely long-term operation (passed tonnage of 691.8 and 1411 mln. tons brutto). The contributions due to the friction of the matrix lattice, interphase boundaries, dislocation substructure, presence of carbide particles, internal stress fields, solid-solution hardening of the pearlite component of the steel structure are estimated.

About the Authors

Yu. F. Ivanov
Institute of High Current Electronics, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Dr Sc (Phys-Math)

2/3 Akademichesky Ave, 634055 Tomsk



V. E. Kormyshev
Siberian State Industrial University
Russian Federation

Cand Sc. (Eng)

42 Kirova St, 654007 Novokuznetsk



V. E. Gromov
Siberian State Industrial University
Russian Federation

Dr Sc (Phys-Math)

42 Kirova St, 654007 Novokuznetsk



A. A. Yuriev
OJSC EVRAZ United West Siberian Metallurgical Plant
Russian Federation

Cand Sc. (Eng)

19 Kosmicheskoe chaussee, 654043 Novokuznetsk



A. M. Glezer
Institute of Metal Science and Physical Metallurgy, Central Research Institute of Ferrous Metallurgy named after I.P. Bardin
Russian Federation

Dr Sc (Phys-Math)

9/23 2nd Baumanskaya St, 105005 Moscow



Yu. A. Rubannikova
Siberian State Industrial University
Russian Federation
42 Kirova St, 654007 Novokuznetsk


References

1. Gromov, V.E., Peregudov, O.A., Ivanov, Yu.F., Konovalov, S.V., Yuriev, A.A., Evolyutsiya strukturno-fazovykh sostoyaniy metalla relsov pri dlitelnoy ekspluatatsii [Evolution of structural and phase states of rail metal during long-term operation], Novosibirsk: SORAN, 2017.

2. Gromov, V.E., Ivanov, Yu.F., Yuriev, A.B., Morozov, K.V., Microstructure of quenched rails, Cambridge: CISP Ltd, 2016.

3. Ivanov, Yu.F., Gromov, V.E., Yuriev, A.A., et al., Priroda poverkhnostnogo uprochneniya differentsirovanno zakalennykh relsov pri dlitelnoy ekspluatatsii [The nature of surface hardening of differentially hardened rails during long-term operation], Deformatsiya i razrushenie materialov, 2018, No 4, pp. 67–85.

4. Gromov, V.E., Yuriev, A.A., Ivanov, Yu.F., et al., Evolyutsiya struktury i svoystv differentsirovanno zakalennykh relsov v protsesse dlitelnoy ekspluatatsii [Evolution of the structure and properties of differentially hardened rails during long-term operation], Metallofizika i noveyshie tekhnologii, 2017, V. 39, No 12, pp. 1599–1646.

5. Ivanisenko, Yu., Fecht, H.J., Microstructure modification in the surface layers of railway rails and wheels, Steel tech, 2008, V. 3, No 1, pp. 19–23.

6. Ivanisenko, Yu., Maclaren, I., Souvage, X., Valiev, R.Z., Fecht, H.J., Shearinduced α→γ transformation in nanoscale Fe–C composite, Acta Mater, 2006, V. 54, pp. 1659–1669.

7. Lewis, R., Christoforou, P., Wang, W.J., Beagles, A., Burstow, M., Lewis, S.R., Investigation of the influence of rail hardness on the wear of rail and wheel materials under dry conditions (ICRI wear mapping project), Wear, 2019, V. 430–431, pp. 383–392.

8. Skrypnyk, R., Ekh, M., Nielsen, J.C.O., Pålsson, B.A., Prediction of plastic deformation and wear in railway crossings. Comparing the performance of two rail steel grades, Wear, 2019, V. 428–429, pp. 302–314.

9. Kim, D., Quagliato, L., Park, D., Kim, N., Lifetime prediction of linear slide rails based on surface abrasion and rolling contact fatigue-induced damage, Wear, 2019, V. 420–421, pp. 184–194.

10. Huang, Y.B., Shi, L.B., Zhao, X.J., Cai, Z.B., Liu, Q.Y., Wang, W.J., On the formation and damage mechanism of rolling contact fatigue surface cracks of wheel/rail under the dry condition, Wear, 2018, V. 400–401, pp. 62–73.

11. Ivanov Yu.F., Gromov V.E., Kormyshev V.E., Glezer A.M. Struktura i svoistva relsov posle extremalno dlitelnoy expluatazii [Structure and properties of rails after extremely long-term operation], Voprosy Materialovedeniya, 2020, No 2 (102), pp. 30–39.

12. Pikering, F.B., Fizicheskoe metallovedenie i obrabotka staley [Physical metallurgy and steel processing], Moscow: Metallurgiya, 1982.

13. Koneva, N.A., Kiseleva, S.F., Popova, N.A., Evolyutsiya struktury i vnutrennie polya napryazheniy [Structure evolution and internal stress fields], Austenitnaya stal, Saarbrucken: LAP LAMBERT Academic Publishing, 2017.

14. Yao, M.J., Welsch, E., Ponge, D., Haghighat, S.M.H., Sandlöbes, S., Choi, P., Herbig, M., Bleskov, I., Hickel, T., Lipinska-Chwalek, M., Shantraj, P., Scheu, C., Zaefferer, S., Gault, B., Raabe, D., Strengthening and strain hardening mechanisms in a precipitation-hardened high-Mn lightweight steel, Acta Materialia, 2017, V. 140, pp. 258–273.

15. Tushinsky, L.I., Bataev, A.A., Tikhomirova, L.B., Struktura perlita i konstruktivnaya prochnost stali [Pearlite structure and structural strength of steel], Novosibirsk: Nauka, 1993.

16. Belenky, B.Z., Farber, B.M., Goldshteyn, M.I., Otsenki prochnosti malouglerodistykh nizko-legirovannykh staley po strukturnym dannym [Strength evaluations of low-carbon lowalloy steels based on structural data], FMM, 1975, V. 39, No 3, pp. 403–409.

17. Sieurin, H., Zander, J., Sandström, R., Modelling solid solution hardening in stainless steels, Mater. Sci. Eng. A., 2006, V. 415, pp. 66–71.

18. Prnka, T., Kolichestvennye sootnosheniya mezhdu parametrami dispersnykh vydeleniy i mekhanicheskimi svoystvami staley [Quantitative relationships between the parameters of dispersed precipitates and the mechanical properties of steels], Metallovedenie i termicheskaya obrabotka stali, 1979, No 7, pp. 3–8.

19. Kormyshev, V.E., Gromov, V.E., Ivanov, Yu.F., Glezer, A.M., Struktura differentsirovanno zakalennykh relsov pri intensivnoy plasticheskoy deformatsii [Structure of differentially hardened rails under severe plastic deformation], Deformatsiya i razrushenie materialov, 2020, No 8, pp. 16–20.

20. Kormyshev, V.E., Gromov, V.E., Ivanov, Yu.F., Glezer, A.M., Yuriev, A.A., Semin, A.P., Sundeev, R.V., Structural phase states and properties of rails after long-term operation, Materials Letters, 2020, V. 268, Article 127499.

21. Kormyshev, V.E., Polevoy, E.V., Yuryev, A.A., Gromov, V.E., Ivanov, Yu.F., Formirovanie struktury differentsirovanno zakalennykh 100-metrovykh relsov pri dlitelnoy ekspluatatsii [Formation of the structure of differentially hardened 100-meter rails during long-term operation], Izvestiya Vysshikh Uchebnykh Zavedeniy. Chernaya Metallurgiya, 2020, V. 63, No 2, pp. 108–115.

22. Rybin, V.V., Bolshie plasticheskie deformatsii i razrushenie metallov [Large plastic deformation and destruction of metals], Moscow: Metallurgiya, 1986.


Review

For citations:


Ivanov Yu.F., Kormyshev V.E., Gromov V.E., Yuriev A.A., Glezer A.M., Rubannikova Yu.A. Hardening mechanisms for rails metal during long-term operation. Voprosy Materialovedeniya. 2020;(3(103)):17-28. (In Russ.) https://doi.org/10.22349/1994-6716-2020-103-3-17-28

Views: 385


ISSN 1994-6716 (Print)