Preview

Voprosy Materialovedeniya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Determination of the compression test method for high temperature-resistant carbon fiber reinforced plastics

https://doi.org/10.22349/1994-6716-2020-103-3-103-113

Abstract

The article presents the results of studies of carbon fiber reinforced plastic VS-51/VTkU-2.200. The influence of the thickness of the specimens and the size of working gage on the compressive strength of carbon fiber reinforced plastic specimens was evaluated; tests were done in accordance with different standards. The results of compression strength tests at high temperature (300–320°С) are given: carbon fiber reinforced plastic VS-51/VTkU-2.200 shows high heat resistance and keeps compressive strength at high temperature tests. Carbon fiber reinforced plastic VS-51/VTkU-2.200 is of increasing interest for application in aircraft structural parts requiring high temperature resistance.

About the Authors

S. I. Voinov
All-Russian Scientific Research Institute of Aviation Materials (VIAM)
Russian Federation
17 Radio St, 105005 Moscow


I. V. Zelenina
All-Russian Scientific Research Institute of Aviation Materials (VIAM)
Russian Federation
17 Radio St, 105005 Moscow


M. I. Valueva
All-Russian Scientific Research Institute of Aviation Materials (VIAM)
Russian Federation

Cand Sc. (Eng)

17 Radio St, 105005 Moscow



I. N. Gulyaev
All-Russian Scientific Research Institute of Aviation Materials (VIAM)
Russian Federation

Cand Sc. (Eng)

17 Radio St, 105005 Moscow



References

1. Kablov, E.N., Sovremennye materialy – osnova innovatsionnoi modernizatsii Rossii [Modern materials are the basis of innovate modernization of Russia], Metally Evrazii, 2012, No 3, pp. 10–15.

2. Kablov, E.N., Materialy novogo pokoleniya – osnova innovatsiy, tekhnologicheskogo liderstva i natsionalnoy bezopasnosti Rossii [Materials of a new generation – the basis of innovation, technological leadership and national security of Russia], Intellekt i tekhnologii, 2016, No 2 (14), pp. 16–21.

3. Kablov, E.N., Innovatsionnye razrabotki VIAM po realizatsii “Strategicheskikh napravlenii razvitiya materialov i tekhnologii ikh pererabotki na period do 2030 goda” [Innovate developments of the All-Russian Scientific Research Institute of Aviation Materials within the project “Strategic development of materials and technologies of their recycling until 2030”], Aviatsionnye Materialy i Tekhnologii, 2015, No 1 (34), pp. 3–33, DOI: 10.18577/2071-9140-2015-0-1-3-33.

4. Kablov, E.N., Materials and chemical technologies for aircraft engineering, Herald of the Russian Academy of Sciences, 2012, V. 82, No 3, pp. 158–167.

5. Raskutin, A.E., Konstruktsionnye ugleplastiki na osnove novykh svyazuyushchikh rasplavnogo tipa i tkaney Porcher [Structural carbon fibers based on new melt binders and Porcher fabrics], Novosti materialovedeniya. Nauka i tekhnika, 2013, No 5, pp. 1–10. URL: http://www.materialsnews.ru (reference date 29/01/2019).

6. Kablov, E.N., Materialy i tekhnologii VIAM dlya Aviadvigatelya [Materials and technologies of VIAM for Aviadvigatel], Permskie Aviatsionnye Dvigateli, 2014, No 31, pp. 43–47.

7. Gulyaev, I.N., Vlasenko, F.S., Zelenina, I.V., Raskutin, A.E., Napravleniya razvitiya termostoykikh ugleplastikov na osnove polyimidnykh i geterotsiklicheskikh polimerov [Trends in the development of heat-resistant carbon plastics based on polyimide and heterocyclic polymers], Trudy VIAM, 2014, No 1, article 04, URL: http://www.viam-works.ru (reference date 05/02/2020). DOI: 10.18577/23076046-2014-0-1-4-4.

8. Svetlichny, V.M., Kudryavtsev, V.V., Polyimidy i problema sozdaniya sovremennykh konstruktsionnykh kompozitsionnykh materialov [Polyimides and the problem of creating modern structural composite materials], Vysokomolekulyarnye Soedineniya. B Series, 2003, V. 45, No 6, pp. 984–1036.

9. Raskutin, A.E., Davydova, I.F., Mukhametov, R.R., Minakov, V.T., Novoe termostoykoe svyazuyushchee dlya steklo- i ugleplastikov [New heat-resistant binder for glass and carbon fiber reinforced plastics], Klei. Germetiki. Tekhnologii, 2007, No 11, pp. 20–23.

10. Kuznetsov, A.A., Semenova, G.K., Perspektivnye vysokotemperaturnye termoreaktivnye svyazuyushchie dlya polimernykh kompozitsionnykh materialov [Promising high-temperature thermosetting binders for polymer composite materials], Rossiyskiy khimichesky zhurnal, 2009, V. 53, No 4, pp. 86–96.

11. Zelenina, I.V., Gulyaev, I.N., Kucherovsky, A.I., Mukhametov, R.R., Termostoykie ugleplastiki dlya rabochego kolesa tsentrobezhnogo kompressora [Heat Resistant CFRPs for Centrifugal Compressor Impeller], Trudy VIAM, 2016, No 2, article 08, URL: http://www.viam-works.ru (reference date 05/02/2020). DOI: 10.18577/2307-6046-2016-0-2-8-2.

12. Mikhaylin, Yu.A., Termoustoychivye polimery i polimernye materialy [Heat-resistant polymers and polymer materials], St Petersburg: Professia, 2006.

13. Mikhaylin, Yu.A., Teplo-, termo- i ognestoykost polimernykh materialov [Heat, thermal and fire resistance of polymeric materials], St Petersburg: Nauchnye osnovy i tekhnologii, 2011.

14. Valueva, M.I., Zelenina, I.V., Akhmadieva, K.R., Zharinov, M.A., Mirovoy rynok vysokotemperaturnykh polyimidnykh ugleplastikov (obzor) [World market for high temperature polyimide carbon plastics (review)], Trudy VIAM, 2019, No 12, article 08, URL: http://www.viam-works.ru (reference date 05/02/2020). DOI: 10.18577/2307-6046-2019-0-12-67-79.

15. Zharinov, M.A., Shimkin, A.A., Akhmadieva, K.R., Zelenina, I.V., Osobennosti i svoystva rasplavnogo polyimidnogo svyazuyushchego polimerizatsionnogo tipa [Features and properties of melted polyimide binder of polymerization type], Trudy VIAM, 2018, No 12, article 05, URL: http://www.viam-works.ru (reference date 05/02/2020). DOI: 10.18577/2307-6046-2018-0-12-46-53.

16. Adamov, A.A., Laptev, M.Yu., Gorshkova, E.G., Analiz otechestvennoy i zarubezhnoy normativnoy bazy po mekhanicheskim ispytaniyam polimernykh kompozitsionnykh materialov [Analysis of domestic and foreign regulatory framework for mechanical testing of polymer composite materials], Konstruktsii iz kompozitsionnykh materialov, 2012, No 2, pp. 72–77.

17. Melnikov, D.A., Ilichev, A.V., Vavilova, M.I., Sravnenie standartov dlya provedeniya mekhanicheskikh ispytaniy stekloplastikov na szhatie [Comparison of standards for mechanical compression testing of fiberglass], Trudy VIAM, 2017, No 3, pp. 55–64, URL: http://www.viam-works.ru (reference date 05/02/2020). DOI: 10.18577/2307-6046-2017-0-3-6-6.

18. Gubsky, D.V., Metody eksperimentalnykh issledovaniy fiziko-mekhanicheskikh svoystv polimernykh kompozitsionnykh materialov [Methods for experimental studies of the physical and mechanical properties of polymer composite materials], Problemy sovremennoy nauki i obrazovaniya, 2016, No 20 (62), pp. 25–29.

19. Shershak, P.V., Osobennosti natsionalnoy standartizatsii metodov ispytaniy polimernykh kompozitsionnykh materialov [Features of the national standardization of test methods for polymer composite materials], Trudy VIAM, 2019, No 2, pp. 77–88, URL: http://www.viam-works.ru (reference date 05/02/2020). DOI: 10.18577/2307-6046-2019-0-2-77-88.

20. Ilichev, A.V., Raskutin, A.E., Gulyaev, I.N., Sravnenie geometricheskikh razmerov obraztsov PKM, ispolzuemykh v mezhdunarodnykh standartakh ASTM i otechestvennykh GOST [Comparison of the geometric dimensions of PCM samples used in international ASTM standards and domestic GOST], Novosti materialovedeniya. Nauka i tekhnika, 2015, No 4, pp. 33–42.

21. State standard GOST 25.602-80: Calculations and strength tests. Mechanical testing methods for composite materials with a polymer matrix (composites). Compression test method at normal, high and low temperatures.

22. ASTM D 3410/D 3410M-08: Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials with Unsupported Gage Section by Shear Loading.

23. ASTM D 6641/D 6641М-09: Standard Test Method for Determining the Compressive Properties of Polymer Matrix Composite Laminates Using a Combined Loading Compression (CLC) Test Fixture.

24. State standard GOST R 56812-2015: Polymer composites. Method for determining mechanical properties under combined compressive load.

25. State standard GOST 33519-2015: Polymer composites. Compression test method at normal, high and low temperatures.

26. Nisitani, H., Kim, Y.-H., Goto, H., Nishitani, H., Effects of gage length and stress concentration on the compressive strength of a unidirectional CFRP, Engineering Fracture Mechanics, V. 49, No 6, 1994, pp. 953–961.

27. Savitsky, R.S., Veshkin, E.A., Vliyanie mekhanicheskoy obrabotki obraztsov pri porezke na ispytaniya kompozitov [Influence of mechanical processing of samples during cutting on testing of composites], Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk, 2017, V. 19, No 4 (2), pp. 214–219.

28. Kablov, E.N., Strategicheskie napravleniya razvitiya materialov i tekhnologii ikh pererabotki na period do 2030 goda [Strategic development of materials and technologies of their recycling until 2030], Aviatsionnye Materialy i Tekhnologii, 2012, No S, pp. 7–17.


Review

For citations:


Voinov S.I., Zelenina I.V., Valueva M.I., Gulyaev I.N. Determination of the compression test method for high temperature-resistant carbon fiber reinforced plastics. Voprosy Materialovedeniya. 2020;(3(103)):103-113. (In Russ.) https://doi.org/10.22349/1994-6716-2020-103-3-103-113

Views: 379


ISSN 1994-6716 (Print)