Preview

Voprosy Materialovedeniya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Investigation of irradiated metal of WWER-type reactor internals after 45 years of operation. Part 3. Microstructure and phase composition

https://doi.org/10.22349/1994-6716-2020-103-3-157-180

Abstract

TEM, SEM, and APT techniques have been used to analyze radiation-induced components of metal structure of fragments cut from the pressure vessel internals of Novovoronezh NPP Unit No 3 after 45 years of operation. The fragments differed in the neutron damaging doses (from 14 to 43 dpa) and the irradiation temperature (from 285 to 315°C). The density and dimensions of titanium carbides and carbonitrides, dislocation loops, radiation-induced voids, segregations, and nanoscale precipitates were determined. The contributions of structural components to the radiation hardening of the investigated fragments of 18Cr-10Ni-Ti stainless steel were estimated.

About the Authors

E. A. Kuleshova
NRC “Kurchatov Institute”; NRNU “MEPhI”
Russian Federation

Dr Sc. (Eng)

1 Akademika Kurchatova Sq, 123182 Moscow
31 Kashirskoe shosse, 115409 Moscow 



S. V. Fedotova
NRC “Kurchatov Institute”
Russian Federation

Cand Sc. (Eng)

1 Akademika Kurchatova Sq, 123182 Moscow



B. A. Gurovich
NRC “Kurchatov Institute”
Russian Federation

Cand Sc. (Eng)

1 Akademika Kurchatova Sq, 123182 Moscow



A. S. Frolov
NRC “Kurchatov Institute”
Russian Federation

Cand Sc. (Eng)

1 Akademika Kurchatova Sq, 123182 Moscow



D. A. Maltsev
NRC “Kurchatov Institute”
Russian Federation

Cand Sc. (Eng)

1 Akademika Kurchatova Sq, 123182 Moscow



B. Z. Margolin
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

Dr Sc. (Eng)

49 Shpalernaya St, 191015 St Petersburg



A. J. Minkin
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation
49 Shpalernaya St, 191015 St Petersburg


A. A. Sorokin
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

Cand Sc. (Eng)

49 Shpalernaya St, 191015 St Petersburg



References

1. Investigation of high temperature annealing effectiveness for recovery of radiation-induced structural changes and properties of 18Cr–10Ni–Ti austenitic stainless steels / B. A. Gurovich, E. A. Kuleshova, A. S. Frolov, e. a. // J. Nucl. Mater. – 2015. – V. 465. – P. 565–581.

2. Fujii K., Fukuya K. Irradiation-induced microchemical changes in highly irradiated 316 stainless steel // J. Nucl. Mater. – 2016. – V. 469. – P. 82–88.

3. Jiao Z., Was G. Novel features of radiation-induced segregation and radiation-induced precipitation in austenitic stainless steels // Acta. Mater. – 2011. – V. 59. – P. 1220–1238.

4. Jiao Z., Was G.Precipitate behavior in self-ion irradiated stainless steels at high doses // J. Nucl. Mater. – 2014. – V. 449. – P. 200–206.

5. Tomographic atom probe characterization of the microstructure of a cold worked 316 austenitic stainless steel after neutron irradiation / A. Etienne, B. Radiguet, P. Pareige, et al. // J. Nucl. Mater. V. 382. – № 64–69.

6. Margolin B. Z., Kursevich I. P., Sorokin A. A., Neustroev V. S. The relationship of radiation embrittlement and swelling for austenitic steels for WWER internals // Proc. of the ASME Pressure Vessels and Piping Conf., ASME, Prague T. – 2010. – P. 939–948.

7. Margolin B. Z., Kursevich I. P., Sorokin A. A., Neustroev V. S. FCC-to-BCC phase transformation in austenitic steels for WWER internals with significant swelling // Proc. of Int. Conf. Fontevraud 7. – Avignon, France. – 2010. – Paper Reference A097–T02.

8. Margolin B. Z., Murashova A. I., Neustroev V. S. Analysis of the influence of type of stress state on radiation swelling and radiation creep of austenitic steels // J. Strength of Materials. – 2012. V. 44 (№ 3). – P. 227–240

9. The radiation swelling effect on fracture properties and fracture mechanisms of irradiated austenitic steels. Part I. Ductility and fracture toughness / B. Z. Margolin, A. A. Sorokin, V. A. Shvetsova et al. // J. of Nucl. Mater. – 2016. – V. 480.– P. 52–68.

10. Chen Y., Chou P.H., Marquis E.A Quantitative atom probe tomography characterization of microstructures in a proton irradiated 304 stainless steel // J. Nucl. Mater. – 2014. – V. 451. – P. 130–136.

11. Grain boundary segregation in neutron-irradiated 304 stainless steel studied by atom probe tomography / T. Toyama, Y. Nozawa, W. Van Renterghem, et al. // J. Nucl. Mater. – 2012. – V. 425. – P. 71–75.

12. Irradiation-induced precipitates in a neutron irradiated 304 stainless steel studied by three-dimensional atom probe / T. Toyama, Y. Nozawa, W. Van Renterghem, et al. // J. Nucl. Mater. 2011. – V. 418. – P. 62–68.

13. Lee G. G., Jin H. H., Chang K., Kwon J. Atom probe tomography analysis of radiationinduced solute clustering in austenite stainless steels // Radiat. Eff. Defects Solids. – 2018. – V. 173. P. 694–704.

14. Dragunov, Yu.G., Zubchenko, A.S., Marochnik staley i splavov [Brandbook of steels and alloys], Moscow, 2014.

15. Handbook of comparative world steel standards / John E. Bringas, ed. – 2 nd ed. – ASTM data series; DS67A. – 2002. – 658 p.

16. Kurata H., Isoda S., Kobayashi T. Chemical Mapping by Energy-Filtering Transmission Electron Microscopy // J. Electron. Microsc. – 1996. – V. 45. – P. 317–320.

17. Lavergne J.-L., Martin J.-M., Belin M. Interactive electron energy-loss elemental mapping by the “Imaging-Spectrum” method // Microscopy Microanalysis Microstructures. – 1992. – V. 3. – P. 517–528.

18. Williams D. B., Carter C. B. Transmission Electron Microscopy: A Textbook for Materials Science. – Springer, 2009. – 779 p.

19. ICDD (2017). PDF-4+ 2017 (Database), ed. S. Kabekkodu, In-ternational Centre for Diffraction Data, Newtown Square, PAUSA, 2017

20. Frolov, A.S., Krikun, E.V., Prikhodko, K.E., Kuleshova, E.A., Razrabotka programmy DIFFRACALC dlya analiza fazovogo sostava splavov [Development of the DIFFRACALC program for the analysis of the phase composition of alloys], Kristallografiya, 2017, V. 64, No 5, pp. 842–848.

21. Sindo, D., Oikava, T., Analiticheskaya prosvechivayushchaya elektronnaya mikroskopiya [Analytical transmission electron microscopy], Moscow: Tekhnosfera, 2006.

22. Malis T., Cheng S. C., Egerton R. F. EELS log-ratio technique for specimen-thickness measurement in the TEM // J. Electron. Microsc. Tech. – 1988. – V. 8. – P. 193–200.

23. Yang Y. Y., Egerton R. F. Tests of two alternative methods for measuring specimen thickness in a transmission electron microscope // Micron. – 1995, – V. 26, Iss. 1. – P. 1–5.

24. Zhang H.-R., Egerton R. F., Malac M. Local thickness measurement through scattering contrast and electron energy-loss spectroscopy // Micron. – 2012, – V. 43, Iss. 1. – P. 8–15.

25. Egerton R. F., Cheng S. C. Measurement of local thickness by electron energy-loss spectroscopy // Ultramicroscopy. – 1987. – V. 21, Iss. 3. – P. 231–244.

26. Iakoubovskii K., Mitsuishi K., Nakayama Y., Furuya K. Thickness measurements with electron energy loss spectroscopy // Microsc. Res. Tech. – 2008. – V. 71, Iss. 8. – P. 626–631.

27. Saltykov, S.A., Stereometricheskaya metallografiya [Stereometric metallography], Moscow: Metallurgiya, 1976.

28. Miller M. K., Forbes R. G. Atom-Probe Tomography. The Local Electrode Atom Probe. Springer, 2014. – 423 p.

29. Local Electrode Atom Probe Tomography. A User’s Guide / D. J. Larson, T. J. Prosa, R. M. Ulfig e. a. – Springer, 2013. – 318 p.

30. Marquis E. A., Hyde J. M. Applications of atom-probe tomography to the characterisation of solute behaviours // Mater. Sci. Eng.: R: Reports. – 2010. – V. 69, Iss. 4–5. – P. 37–62.

31. Hyde J. M., Marquis E. A., Wilford K. B., Williams T. J. A sensitivity analysis of the maximum separation method for the characterisation of solute clusters // Ultramicroscopy. – 2011. – V. 111, Iss. 6. – P. 440–447.

32. Analysis of Radiation Damage in Light Water Reactors: Comparison of Cluster Analysis Methods for the Analysis of Atom Probe Data / J. M. Hyde, G. DaCosta, C. Hatzoglou e. a. // Microscopy and Microanalysis. – 2017 – V. 23. – P. 366–375.

33. Khimushin, F.F., Nerzhaveyushchie stali [Stainless steels], Moscow: Metallurgiya, 1967.

34. Maziasz P.J. Overview of microstructural evolution in neutron-irradiated austenitic stainless steels // J. Nucl. Mater. – 1993. – V. 205 – P. 118–145.

35. Ayanoglu M., Motta A.T. Microstructural evolution of the 21Cr32Ni model alloy under irradiation // J. Nucl. Mater. – 2018. – V. 510. – P. 297–311.

36. Irradiation Microstructure of Austenitic Steels and Cast Steels Irradiated in the BOR-60 Reactor at 320°C / Y. Yang, C. Yiren, H. Yina e. a. // Proc. of 15 th Int. Conf. on Environmental Degradation of Materials in Nuclear Power Systems‐Water Reactors. – 2012. – P. 2447–2450.

37. Ken H., Yao Z., Morin G., Griffiths M. TEM characterization of in-reactor neutron irradiated CANDU spacer material Inconel X-750 // J. Nucl. Mater. – 2014. – V. 451. – P. 88–96.

38. Boothby R. M. Radiation effects in nickel-based alloys // Comprehensive Nucl. Mater. – 2012. V. 4. – P. 123–150.

39. Griffiths M., Bickel G., Douglas S. Irradiation-Induced Embrittlement of Inconel 600 Flux Detectors in CANDU Reactors // J. Energy Power Eng. – 2012. – V. 6. – P. 188–194.

40. Intergranular fracture in irradiated Inconel X-750 containing very high concentrations of helium and hydrogen / C.D. Judge, N. Gauquelin, L. Walters et al. // J. Nucl. Mater. – 2015. – V. 457. P. 165–172.

41. Prediction of swelling of 18Cr10NiTi austenitic steel over a wide range of displacement rates / A. S. Kalchenko, V. V. Bryk, N. P. Lazarev e. a. // J. Nucl. Mater. – 2010. – V. 399. – P. 114–121.

42. Stoller R. E., Maziasz P. J., Rowcliffe A. F., Tanaka M. P. Swelling behavior of austenitic stainless steels in a spectrally tailored reactor experiment: Implications for near-term fusion machines // J. Nucl. Mater. – 1988. – V. 155–157. – P. 1328–1334.

43. Surh M. P., Sturgeon J., Wolfer W. Vacancy cluster evolution and swelling in irradiated 316 stainless steel // J. Nucl. Mater. – 2004. – V. 328. – P. 107–114.

44. Allen T. R., Cole J. I., Kenik E. A., Was G. S. Analyzing the effect of displacement rate on radiation-induced segregation in 304 and 316 stainless steels by examining irradiated EBR-II components and samples irradiated with protons // J. Nucl. Mater. – 2008. – V. 376. – P. 169–173.

45. Kato T., Takahashi H., Izumiya M. Grain boundary segregation under electron irradiation in austenitic stainless steels modified with oversized elements // J. Nucl. Mater. – 1992. – V. 189. – P. 167–174.

46. Was G. S., Bruemmer S.M. Effects of irradiation on intergranular stress corrosion cracking // J. Nucl. Mater. – 1994. – No. 216. – P. 326–347.

47. Kenik E. A., Inazumi T., Bell G.E. Radiation-induced grain boundary segregation and sensitization of a neutron-irradiated austenitic stainless steel // J. Nucl. Mater. – 1991. – V. 183. – P. 145–153.

48. Duh T., Kai J., Chen F. Effects of grain boundary misorientation on solute segregation in thermally sensitized and proton-irradiated 304 stainless steel // J. Nucl. Mater. – 2000. – V. 283–287. – P. 198–204.

49. Renault A.-E., Pokor C., Garnier J., Malaplate J. Microstructure and Grain Boundary Chemistry Evolution in Austenitic Stainless Steels Irradiated in the BOR-60 Reactor up to 120 dpa // Proc. of 14 th Int. Conf. on Environmental Degradation of Materials in Nuclear Power Systems‐Water Reactors. – 2009. – P. 1324–1334.

50. Grain boundary character dependence of radiation-induced segregation in a model Ni–Cr alloy / C. M. Barr, L. Barnard, J. E. Nathaniel e. a. // J. Mater. Res. – 2015. – V. 30. – P. 1290–1299.

51. Zinkle S. J., Maziasz P. J., Stoller R. E. Dose dependence of the microstructural evolution in neutron-irradiated austenitic stainless steel // J. Nucl. Mater. – 1993. – V. 206. – P. 266–286.

52. Radiation-induced material changes and susceptibility to intergranular failure of light-water-reactor core internals / S. M. Bruemmer, E. P. Simonen, P. M. Scott e. a. // J. Nucl. Mater. – 1999. – V. 274. pp. 299–314.

53. Hojou K., Kenik E. A. Radiation-induced segregation in FFTF-irradiated austenitic stainless steels // J. Nucl. Mater. – 1992. – V. 191–194. – P. 1331–1335.

54. Van Renterghem W, Al Mazouzi A, Van Dyck S (2011) Influence of post irradiation annealing on the mechanical properties and defect structure of AISI 304 steel. J Nucl Mater 413:95–102. https://doi.org/10.1016/j.jnucmat.2011.04.006

55. First-principles investigation on the composition of Ni–Si precipitates formed in irradiated stainless steels D. Chen, K. Murakami, K. Dohi e. a. // J. Nucl. Mater. – 2017. – V. 494. – P. 354–360.

56. Tan L., Busby J. T. Alloying effect of Ni and Cr on irradiated microstructural evolution of type 304 stainless steels // J. Nucl. Mater. – 2013. – V. 443. – P. 351–358.

57. Microstructure and mechanical properties of austenitic stainless steel 12X18H9T after neutron irradiation in the pressure vessel of BR-10 fast reactor at very low dose rates / S. I. Porollo, A. M. Dvoriashin, Y. V. Konobeev e. a. // J. Nucl. Mater. – 2006. – V. 359. – P. 41–49.

58. Mamivand M., Yang Y., Busby J., Morgan D. Integrated modeling of second phase precipitation in cold-worked 316 stainless steels under irradiation // Acta Mater. – 2017. – V. 130. – P. 94–110.

59. Neustroev V. S., Garner F. A. Very high swelling and embrittlement observed in a Fe–18Cr10Ni–Ti hexagonal fuel wrapper irradiated in the BOR-60 fast reactor // J. Nucl. Mater. – 2008. – V. 378. P. 327–332.

60. Kozlov A. V., Portnykh I. A., Bryushkova S. V., Kinev E. A. Effect of vacancy porosity on the strength characteristics of austenitic steel ChS-68 // Phys. Metals Metallogr. – 2003. – № 95(4). P. 379–389.

61. Operating Organization Guidance Document: RD-EO 1.1.2.99.0944–2013: Methodology for calculating the strength and residual life of VVER-1000 internals when the service life is extended to 60 years.

62. Determination of In-Service Change in the Geometry of WWER-1000 Core Baffle: Calculations and Measurements / B. Z. Margolin, A. Ya. Varovin, A. J. Minkin e. a. // Proc. of Int. Conf. Fontevraud 8. Avignon, France, 2013.

63. Voevodin, V.N., Neklyudov, I.M., Evolyutsiya strukturno-fazovogo sostoyaniya i radiatsionnaya stoykost konstruktsionnykh materialov [Evolution of the structural-phase state and radiation resistance of structural materials], Kiev: Naukova Dumka, 2006.

64. Porter D. L. Ferrite formation in neutron-irradiated type 304L stainless steel // J. Nucl. Mater. 1979. – V. 79. – P. 406–411.

65. Porter D. L., Wood E. L. Reactor Precipitation and Ferritic Transformation in NeutronIrradiaed Stainless Steels //J. Nucl. Mater. – 1979. – V. 83. – P. 90–97.

66. On the correlation between irradiation-induced microstructural features and the hardening of reactor pressure vessel steels // M. Lambrecht, E. Meslin, L. Malerba e. a. // J. Nucl. Mater. – 2010. V. 406. – P. 84–89.

67. Lucas G.E. The evolution of mechanical property change in irradiated austenitic stainless steels // J. Nucl. Mater. – 1993. – V. 206. – P. 287–305.

68. Razorenov, S.V., Garkushin, G.V., Astafurova, E.G., et al., Vliyanie plotnosti dislokatsii na soprotivlenie vysokoskorostnoy deformatsii i razrusheniyu v medi M1 i austenitnoy nerzhaveyushchey stali [Influence of dislocation density on resistance to high rate deformation and fracture in copper M1 and austenitic stainless steel], Fizicheskaya mezomekhanika, 2017, No 20 (4), pp. 43–51.

69. Kocks U.F. The relation between polycrystal deformation and single-crystal deformation // Metall. Mater. Trans. – 1970. – V. 1. – P. 1121–1143.

70. PNAE G-7-002-86: Standards for calculating the strength of equipment and pipelines of nuclear power plants, Moscow: Energoizdat, 1989.

71. Fujii K., Fukuya K. Atom Probe Tomography Analysis of Cold-Worked 316 Stainless Steels Irradiated in PWR // Proc. of Int. Conf., Fontevraud 7, Avignon, France, 2018.


Review

For citations:


Kuleshova E.A., Fedotova S.V., Gurovich B.A., Frolov A.S., Maltsev D.A., Margolin B.Z., Minkin A.J., Sorokin A.A. Investigation of irradiated metal of WWER-type reactor internals after 45 years of operation. Part 3. Microstructure and phase composition. Voprosy Materialovedeniya. 2020;(3(103)):157-180. (In Russ.) https://doi.org/10.22349/1994-6716-2020-103-3-157-180

Views: 374


ISSN 1994-6716 (Print)