

Digital technologies in detecting inhomogeneous concentration zones in heat-resistant nickel alloys structure, including those obtained by selective laser melting
https://doi.org/10.22349/1994-6716-2020-104-4-32-47
Abstract
This work presents the experimental data obtained using an integrated approach in the study of the chemical, crystallographic and morphological homogeneity of the structure of a heat-resistant material on a nickel base with carbide-intermetallic hardening and an increased content of the γ-phase, synthesized on single-crystal substrates of various compositions with CHO <001> in Z-direction. Using the proposed method for studying the capabilities and certification of different-level structural structures of samples in the initial state and after thermal study of the impact. The analysis was carried out using the system for EBSD analysis integrated into the scanning electron microscope and the software package for the analysis of electron microscopic images.
Keywords
About the Author
A. N. RaevskikhRussian Federation
17 Radio St, 105005 Moscow.
References
1. Kablov, E.N., Additivnye tekhnologii - dominanta natsionalnoy tekhnologicheskoy initsiativy [Additive technologies dominate the national technology initiative], Intellekt i tekhnologii, 2015, No 2 (11), pp. 52-55.
2. Kablov, E.N., Nastoyashchee i budushchee additivnykh tekhnologiy [Present and future of additive technologies], Metally Yevrazii, 2017, No 1, pp. 2-6.
3. Kablov, E.N., Klyuchevaya problema - materialy [The key issue is materials], Tendentsii i orientiry innovatsionnogo razvitiya Rossii, Moscow: VIAM, 2015, pp. 458-464.
4. Samoylov, A.I., Morozova, G.I., Krivko, A.I., Afonichev, O.S., Analiticheskiy metod optimizatsii legirovaniya zharoprochnykh nikelevykh splavov [Analytical method for optimizing alloying of heat-resistant nickel alloys], Materialovedenie, 2000, No 2, pp. 14-17.
5. Morozova, G.I., Sbalansirovannoe legirovanie zharoprochnykh nikelevykh splavov [Balanced alloying of heat-resistant nickel alloys], Metally, 1993, No 1, pp. 38-41.
6. Petrushin, N.V., Elyutin E.S., Nazarkin, R.M., Kolodochkina, V.G., Fesenko, T.V., Struktura i svoystva monokristallov zharoprochnogo nikelevogo splava, soderzhashchego reniy i ruteniy [The structure and properties of single crystals of a heat-resistant nickel alloy containing rhenium and ruthenium], Metallurgiya mashinostroeniya, 2013, No 1, pp. 12-18.
7. Dynin, N.V., Ivanova, A.O., Khasikov, D.V., Oglodkov, M.S., Selektivnoe lazernoe splavlenie alyuminievykh splavov [Selective laser alloying of aluminum alloys]: A review, Trudy VIAM, 2017, No 8 (56), pp. 12-23. URL: http://www.viam-works.ru (reference date 10/01/2018). DOI 10.18577/23076046-2017-0-8-2-2.
8. Pinkerton, A.J., Lasers in additive manufacturing, Optics & Laser Technology, 2016, V. 78, pp. 25-32.
9. Yadroitsev, I., Selective laser melting: Direct manufacturing of 3D-objects by selective laser melting of metal powders, Saarbuken, 2009.
10. Bremen, S., Selective Laser Melting, Laser Technik Journal, 2012, V. 9, No. 2, pp. 33-38.
11. Aleshin, N.P., Murashov, V.V., Evgenov, A.G., et al., Klassifikatsiya defektov metallicheskikh materialov, sintezirovannykh metodom selektivnogo lazernogo splavleniya, i vozmozhnosti metodov nerazrushayushchego kontrolya dlya ikh obnaruzheniya [Classification of defects in metallic materials synthesized by selective laser fusion and the possibilities of non-destructive testing methods for their detection], Obshchie voprosy defektoskopii, 2016, No 1, pp. 48-55.
12. Xia, M., Gu, D., Yu, G., Dai, D., Porosity evolution and its thermodynamic mechanism of randomly packed powder-bed during selective laser melting of Inconel 718 alloy, International Journal of Machine Tools and Manufacture, 2017, V. 116, pp. 96-106.
13. Sukhov D.I., Mazalov, P.B., Nerush, S.V., Khodyrev, N.A., Vliyanie parametrov selektivnogo la-zernogo splavleniya na obrazovanie poristosti v sintezirovannom materiale korrozionnostoykoy stali [Effect of the parameters of selective laser alloying on the formation of porosity in the synthesized material of corrosion-resistant steel], Trudy VIAM, 2017, No 8 (56), pp. 34-44. URL: http://www.viam-works.ru (reference date 11/01/2018). DOI 10.18577/2307-6046-2017-0-8-4-4.
14. Lu Y., Wu S., Gan Y., Huang T., Yang C., Junjie L., Lin J., Study on the microstructure, mechanical property and residual stress of SLM Inconel-718 alloy manufactured by differing island scanning strategy, Opt. LaserTechnol. 2015, No 75, pp. 197-206.
15. Catchpole-Smith, S., Aboulkhair, N., Parry, L., Tuck, C., Ashcroft, I.A., Clare, A. Clare Fractal scan strategies for selective laser melting of “unweldable” nickel superalloys, Additive Manufacturing, 2017, No 15, pp. 113-122. DOI: 10.1016/j.addma.2017.02.002.
16. Rolchigo, M. R., Mendoza, M. Y., Samimi, P., Brice, D. A., Martin, B., Collins, P. C., Lesar, R., Modeling of Ti-W solidification microstructures under Additive manufacturing conditions, Metallurgical and materials transactions, 2017, V. 48a, pp. 3606-3622.
17. Vajda, E. G., Humphrey, S., Skedros, J. G., Bloebaum, R. D., Influence of topography and specimen preparation on backscattered electron images of bone, Scanning, 1999, V. 21, pp. 379-386.
18. Kangas, E., А method for quantitative determination of mean atomic number from backscattered electron images, A mineralogical focus, Bachelor of Science thesis, Goteborg, 2017.
19. Lloyd, G., Atomic number and crystallographic contrast images with the SEM: A review of backscatterd electron techniques, Mineral Mag, 1987, No 51, pp. 3-19.
20. Sanchez, E. Torres, Deluigi M., Castellano G., Mean Atomic Number Quantitative Assessment in Backscattered Electron Imaging, Microsc. Microanal., 2012, No 18, pp. 1355-1361.
21. Tkal, V.A., Sharaeva, A.V., Zhukovskaya, I.A., Tsifrovaya obrabotka topograficheskikh izobrazheniy defektov struktury monokristallov [Digital processing of topographic images of structural defects in single crystals], Sovremennye metody analiza difraktsionnykh dannykh i aktualnye problemy rentgenovskoy optiki: Collection of materials and program of the Sixth International Scientific Seminar and the Fourth International Youth Scientific School-Seminar, August 19—27, 2013, Veliky Novgorod, 2013, pp. 234-235.
22. Tkal, V.A., Sharaeva, A.V., Zhukovskaya, I.A., Tsifrovaya obrabotka polyarizatsionno-opticheskikh izobrazheniy defektov struktury monokristallov [Digital processing of polarization-optical images of defects in the structure of single crystals], Sovremennyye metody analiza difraktsionnykh dannykh i aktualnye problemy rentgenovskoy optiki: collection of materials and program of the Sixth International Scientific Seminar and the Fourth International Youth Scientific School-Seminar, August 19—27, 2013, NF SPbGUSE, Velikiy Novgorod, 2013, pp. 131-133.
23. Tkal, V.A., Sharaeva, A.V., Zhukovskaya, I.A., Kolichestvennaya otsenka effektivnosti tsifrovoy obrabotki HDR-izobrazheniy [Quantifying the efficiency of digital processing of HDR images], Sovremennyye metody analiza difraktsionnykh dannykh i aktualnye problemy rentgenovskoy optiki: collection of materials and program of the Sixth International Scientific Seminar and the Fourth International Youth Scientific School-Seminar, August 19 27 2013, Velikiy Novgorod, 2013, pp. 134-135.
24. Gonzalez, R.C, Woods, R.E., Digital Image Processing, 3rd ed., Pearson, Prentice Hall.
25. Leszek, W., Image analysis: applications in materials engineering, CRC Press LLC, 1999
26. Xia, M., Gu, D., Yu, G., Dai, D., Chen, H., Shi, Q., Selective laser melting 3D printing of Ni-based superalloy: understanding thermodynamic mechanisms, Sci. Bull, 2016, No 61 (13), pp. 1013-1022, DOI 10.1007/s11434-016-1098-7.
27. Clark, M., Clare, A., Dryburgh, P., Li, W., Patel, R., Pieris, D., Sharples, S., Spatially Resolved Acoustic Spectroscopy (SRAS) Microstructural Imaging, 45th Annual Review of Progress in Quantitative Nondestructive Evaluation, AIP Conf. Proc., V. 2102, Issue 1, DOI: 10.1063/1.5099705.
28. Attallah, M.M., Jennings, R., Wang, X., Carter, L.N. Additive manufacturing of Ni-based superalloys: The outstanding issues, MRS bulletin, 2016, V. 41, No 10, pp. 758-764, DOI: 10.1557/mrs.2016.211.
29. Marchese, G., Lorusso, M., Calignano, F., Ambrosio, E. P., Manfredi, D., Pavese, M., Biamino, S., Ugues, D., Fino, P., Inconel 625 by direct metal laser sintering: effects of the process parameters and heat treatments on microstructure and hardness, Superalloys 2016: Proceedings of the 13th International Symposium on Superalloys TMS (The Minerals, Metals & Materials Society), 2016, pp. 1013-1020.
30. Raevskikh, A.N., Chabina, E.B., Petrushin, N.V., Filonova, E.V., Issledovanie strukturno-fazovykh izmeneniy na granitse mezhdu monokristallicheskoy podlozhkoy i splavom ZHS32-vi, poluchennym selektivnym lazernym splavleniem, posle vozdeystviya vysokikh temperatur i napryazheniy [Investigation of structural and phase changes at the interface between a single-crystal substrate and ZhS32-vi alloy obtained by selective laser alloying after exposure to high temperatures and stresses], Trudy VIAM, 2019, No 1 (73), pp. 312. URL: http://www.viam-works.ru (reference date 20/01/2020). DOI: 10.18577/2307-6046-2019-0-1-3-12.
31. Sames, W.J., List, F.A., Pannala, S., Dehoff, R.R., Babu, S.S., The metallurgy and processing science of metal additive manufacturing, International Materials Reviews, 2016, pp. 1-46. DOI: 10.1080/09506608.2015.1116649.
32. Bokshteyn, S.Z., Bolberova, E.V., Ignatova, I.A., Kishkin, S.T., Razumovsky, I.M., Vliyanie velichiny nesootvetstviya parametrov reshetok faz na diffuzionnuyu pronitsayemost mezhfaznykh granits [Influence of the value of the mismatch of the lattice parameters of the phases on the diffusion permeability of interphase boundaries], Fizika metallov i metallovedenie, 1985, No 59 (5), pp. 938-942.
33. Shanyavsky, A.A., Artamonov, M.A., Prudnikov, I.D., Grishin, M.M., Metodika avtomatizirovannogo opredeleniya temperaturnogo peregreva zharoprochnykh nikelevykh splavov po sostoyaniyu uprochnyayushchey fazy [Technique for automated determination of temperature overheating of heat-resistant nickel alloys by the state of the hardening phase], Nauchnyy vestnik MGTU GA, 2007, No 123, pp. 74-78.
34. Bronfin, M.B., Alekseev, A.A., Chabina, E.B., Metallofizicheskie issledovaniya. Vozmozhnosti i perspektivy [Metallophysical research. Opportunities and prospects], 75 let. Aviatsionnye materialy. Izbrannye trudy VIAM 1932-2007, Moscow: VIAM, 2007.
35. Belov, N.V., Protsessy realnogo kristalloobrazovaniya [Real crystal formation processes], Moscow: Nauka, 1977, pp. 1-235.
36. Kablov, E.N., Innovatsionnye razrabotki VIAM po realizatsii “Strategicheskikh napravlenii razvitiya materialov i tekhnologii ikh pererabotki na period do 2030 goda” [Innovative developments of the All-Russian Scientific Research Institute of Aviation Materials within the project “Strategic development of materials and technologies of their recycling until 2030”], Aviatsionnye materialy i tekhnologii, 2015, No 1, pp. 3-33, DOI: 10.18577/2071-9140-2015-0-1-3-33.
Review
For citations:
Raevskikh A.N. Digital technologies in detecting inhomogeneous concentration zones in heat-resistant nickel alloys structure, including those obtained by selective laser melting. Voprosy Materialovedeniya. 2020;(4(104)):32-47. (In Russ.) https://doi.org/10.22349/1994-6716-2020-104-4-32-47