

Structure and microhardness of binding for diamond tools based on tungsten carbide obtained by impregnation of iron-carbon melt
https://doi.org/10.22349/1994-6716-2020-104-4-95-108
Abstract
In this work, an experimental modeling of the technology for producing a matrix by sintering a diamond-containing briquette with a filler of tungsten monocarbide powder impregnated with a Fe-C eutectic melt in a vacuum is carried out. The microstructure, elemental and phase compositions of the products formed in the process of sintering a diamond-containing matrix with impregnation with a Fe-C eutectic melt in vacuum have been studied by scanning electron microscopy, X-ray spectral and X-ray phase analyzes, and Raman spectroscopy. It was found that the matrix consists of 61.0% tungsten carbide phases, 17.0% of iron carbide, 16.5% of α-Fe, and 5.5% of graphite. The eutectic Fe-C alloy, which serves as a matrix binder, consists of a ferrite-pearlite metal base with graphite inclusions. It is shown that at the diamond - matrix interface, graphite inclusions are formed not as a continuous layer, but as discontinuous areas along the perimeter of diamond grains. The microhardness of the WC-based matrix impregnated with the Fe-C melt is ~ 11 GPa, which is more than 3 times higher than the microhardness of the WC-Co-Cu hard alloy matrix obtained by sintering with copper impregnation.
The research results can be used in the development of technology for the manufacture of wear-resistant matrices of diamond tools of a wide class used in the processing of materials with a high level of hardness.
About the Authors
P. P. SharinRussian Federation
Cand. Sc. (Phys-Math).
1 Oktyabrskaya St, 677027 Yakutsk.
M. P. Akimova
Russian Federation
1 Oktyabrskaya St, 677027 Yakutsk.
S. P. Yakovleva
Russian Federation
Dr Sc. (Phys-Math).
1 Oktyabrskaya St, 677027 Yakutsk.
V. I. Popov
Russian Federation
Cand. Sc (Phys-Math).
58 Belinskogo St, 677000 Yakutsk.
References
1. Bakul, V.N., Nikitin, Yu.I., Vernik, E.B., Selekh, V.F., Osnovy proektirovaniya i tekhnologiya izgotovleniya abrazivnogo i almaznogo instrumenta [Basics of designing and technology of manufacturing of the abrasive and diamond tool], Moscow: Mashinostroenie, 1975.
2. Novikov, N.V., Bondarenko, N.A., Zhukovsky, A.N., Mechnik, V.A., Vliyanie diffuzii i khimicheskikh reaktsiy na strukturu i svoistva burovykh vstavok. 1: Kineticheskoe opisanie sistem Calmaz-VK6 i Calmaz-(VK6-CrB2-W2B5) [The effect of diffusion and chemical reactions on the structure and properties of drill bit inserts. 1: Kinetic description of systems Cdiamond-VK6 и Cdiamond-(VK6-CrB2-W2Bs], Fizicheskaya mezomekhanika, 2005, V. 8, No 2, pp. 99-106.
3. Novikov, N.V., Bondarenko, N.A., Zhukovsky, A.N., Mechnik, V.A., Vliyanie diffuzii i khimicheskikh reaktsiy na strukturu i svoistva burovykh vstavok. 2: Rezultaty attestatsii strukturnogo sostoyaniya sverkhtverdykh materialov sostava almaz-tverdy splav VK6 [The effect of diffusion and chemical reactions on the structure and properties of drill bit inserts. 2. Evaluation results for the structural state of superhard materials of composition diamond - hard alloy VK6], Fizicheskaya mezomekhanika, 2006, V. 9, No 2, pp. 107-116.
4. Vityaz, P.A., Zhornik, V.I., Kukareko, V.A., Issledovanie strukturno-fazovogo sostoyaniya i svoystv spechennykh splavov, modernizirovannykh nanorazmernymi almazosoderzhaschimi dobavkami [A research of structural-phase state and properties of sintered alloys modified by nano-sized diamond containing additives], Izvestiya natsionalnoy akademii nauk Belarusi, Physical-technical series, 2011, No 3, pp. 5-17.
5. Artini, C., Muolo, M.L., Passerone, A., Diamond-metal interfaces in cutting tools: a review, Journal of Materials Science, 2012, V. 47 (7), pp. 3252-3264.
6. Semenov, A.P., Pozdnyakov, V.V., Kraposhina, L.B., Trenie i kontaktnoe vzaimodeystvie grafita i almaza s metallami i splavami [Friction and contact interaction of graphite and diamond with metals and alloys], Moscow, Nauka, 1974.
7. Semenov, A.P., Pozdnyakov, V.V., Lapshina, V.A., Kontaktnoe evtekticheskoe plavlenie almaza i grafita s metallami triady zheleza [Contact eutectic melting of diamond and graphite with iron triad metals], Doklady Akademii nauk SSSR, 1968, V. 181 (6), pp. 1368-1371.
8. Nozhkina, A.V., Bugakov, V.I., Laptev, A.I., Prochnost almaznykh materialov posle nagreva pod davleniem [Strength of diamond materials after heating under pressure], Porodorazrushayuschiy i metalloobrabatyvayuschiy instrument — tekhnika i tekhnologiya ego izgotovleniya i pnmeneniya, 2018, No 21, pp. 151-160.
9. Gurevich, Yu.G., K teorii evtekticheskikh splavov i evtekticheskogo (kontaktnogo) plavleniya [About theory of eutectic alloys and eutectic (contact) melting], Metallovedeniye i termicheskaya obrabotka metallov, 2010, V. 52 (7-8), pp. 354-356.
10. Zalkin, V.M., Kraposhin, V.S., Stroenie zhelezouglerodistykh rasplavov. O stabilnosti tsementita v rasplavakh [Structure of iron-carbon melts. About stability of cementite in melts], Metallovedenie i termicheskaya obrabotka metallov, 2010, V. 52 (1-2), pp. 3-6.
11. Pant, U., Meena, H., Shivagan, D.D., Development and realization of iron-carbon eutectic fixed point at NPLI, MAPAN-Journal Metrology Society of India, 2018, V. 33, pp. 201-208.
12. Kolesnichenko, G.A., Naidich, Yu.V., Petrischev, V.Ya., Sergeenkova, V.M., Kinetics of contact melting in iron-carbon systems, Powder Metallurgy and Metal Ceramics, 1996, V. 35 (9-10), pp. 529-532.
13. Chumanov, I.V., Anikeev, A.N., Propitka podlozhek iz monokarbida volframa nizkouglerodistoi stalyu kontaktnym i beskontaktnym metodami [Impregnation of substrates of tungsten monocarbide with low carbon steel using contact and non-contact methods], Izvestiya vuzov. Chernaya metallurgiya, 2018, V. 61 (5), pp. 407-412.
14. Anikeev, A.N., Chumanov, V.I., Chumanov I.V., Izuchenie smachivaemosti WC rasplavom zheleza razlichnymi metodami [Study of wettability of WC with iron melt by different methods], Vestnik YuUrGU: Series Metallurgy, 2013, V. 13 (2). pp. 44-46.
15. Tikhomirov, S.V., Kimstach, T.B., Spektroskopiya kombinatsionnogo rasseyaniya -perspektivny metod issledovaniya uglerodnykh nanomaterialov [Spectroscopy of Raman scattering is a promising method for the investigation of carbon nanomaterials], Analitika, 2011, No 1, pp. 28-32.
16. Bukalov, S.S., Mikhalitsin, L.A., Zubavichus, Ya.V., Leites, L.A., Novikov, Yu.N., Issledovanie stroeniya grafitov i nekotorykh drugikh sp2-uglerodnykh materialov metodami mikro-spektrometrii KR i rentgenovskoi difraktometrii [Investigation of the structure of graphite and some other sp2 carbon materials by means of micro-Raman spectroscopy and X-ray diffraction], Rossiysky khimichesky zhurnal, 2006, V. 50 (1), pp. 83-91.
17. Sidorenko, D.A., Zaitsev, A.A., Kirichenko, A.N., Levashov, V.V., Kurbatkina, V.V., Loginov, P.A., Rupasov, S.I., Andreev, V.A., Interaction of diamond grains with nanosized alloying agents in metal-matrix composites as studied by Raman spectroscopy, Diamond and Related Materials, 2013, V. 38, pp. 59-62. DOI: 10.1016/j.diamond.2013.05.007.
18. Ni, Z., Wang, Y., Yu, T., Shen, Z., Raman spectroscopy and imaging of graphene, Nano Research, 2008, V. 1 (4), pp. 273-291. DOI: 10.1007/s12274-008-8036-1.
19. Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K.S., Roth, S., Geim, A.K., Raman spectrum of graphene and graphene layers, Physical Review Letters, 2006, V. 97, pp. 187401. DOI: 10.1103/PhysRevLett.97.187401.
20. Yoon, D., Moon, H., Son, Y.-W., Choi, J.S., Park, B.H., Cha, Y.H., Kim, Y.D., Cheong, H., Interference effect on Raman spectrum of graphene on SiO2/Si, Physical Review B, 2009, V. 80, pp. 125422. DOI: 10.1103/PhysRevB.80.125422.
21. Nozhkina, A.V., Vliyanie metallov na fazovoe prevrashchenie almaza v grafit [The influence of metals on the phase transformation of diamond to graphite], Sverkhtverdye materialy, 1988, No 3, pp. 11-15.
22. Sidorenko, D.A., Levashov, Е.А., Loginov, P.A., Shvyndina, N.V., Skryleva, E.A., Uskova, I.E., O mekhanizme samoproizvolnogo plakirovaniya almaza karbidom volframa v protsesse spekaniya instrumenta s nanomodifitsirovannoy metallicheskoy svyazkoy Cu-Fe-Co-Ni [About the mechanism of spontaneous cladding of diamond with tungsten carbide in the process of sintering a tool with a nanomodified Cu-Fe-Co-Ni metal binder], Izvestiya vuzov. Tsvetnaya metallurgiya, 2015, No 5, pp. 53-63. DOI: 10.17073/0021-3438-2015-5-53-63.
Review
For citations:
Sharin P.P., Akimova M.P., Yakovleva S.P., Popov V.I. Structure and microhardness of binding for diamond tools based on tungsten carbide obtained by impregnation of iron-carbon melt. Voprosy Materialovedeniya. 2020;(4(104)):95-108. (In Russ.) https://doi.org/10.22349/1994-6716-2020-104-4-95-108