

Effect of Al2O3 nanofibers on compaction, phase composition, and mechanical properties of ZrO2-based composites obtained by vacuum pressureless sintering
https://doi.org/10.22349/1994-6716-2020-104-4-132-143
Abstract
This work studies the effect of the relative content of Al2O3 nanofibers on the compaction, phase composition, and physicomechanical properties of composites based on ZrO2 obtained by free vacuum sintering. It was found that in the process of manufacturing composites, nanofibers are sintered into Al2O3 grains of complex, elongated shape, which form a solid, frame-reinforcing structure. The relative density of composites with 5 wt. % and 10 wt. % of nanofibers, decreases up to 95%. It is shown that in all sintered samples the tetragonal modification of ZrO2 acts as the main phase, and the different content of nanofibers affects the amount of cubic and monoclinic modifications of ZrO2. It was found that addition of 5 wt. % and 10 wt. % of Al2O3 nanofibers increases the microhardness of the composite by 11% and crack resistance by 46%.
About the Authors
A. A. LeonovRussian Federation
30 Lenin Ave, 634050 Tomsk; 2/3 Akademichesky Ave, 634055 Tomsk.
E. V. Abdulmenova
Russian Federation
30 Lenin Ave, 634050 Tomsk; 2/4 Akademichesky Ave, 634055 Tomsk.
M. P. Kalashnikov
Russian Federation
30 Lenin Ave, 634050 Tomsk; 2/4 Akademichesky Ave, 634055 Tomsk.
Jing Li
Russian Federation
30 Lenin Ave, 634050 Tomsk.
References
1. Zhigachev, A.O., Golovin, Yu.I., Umrikhin, A.V., Korenkov, V.V., Tyurin, A.I., Rodaev, V.V., Dyachek, T.A., Keramicheskie materialy na osnove dioksida tsirkoniya [Ceramic materials based on zirconium dioxide], Moscow: Tekhnosfera, 2018.
2. Podzorova, L.I., Ilyicheva, A.A., Penkova, O.I., Aladyev, N.A., Baikin, A.S., Konovalov, A.A., Morokov, E.S., Dispersnoe uprochnenie kompozitov sistemy oksida alyuminiya i tetragonalnogo dioksida tsirkoniya, stabilizirovannogo kationami tseriya [Disperse hardening of composites of the aluminum oxide system and tetragonal zirconia stabilized by cerium cations], Steklo i keramika, 2017, No 6, pp. 16-20.
3. Seo, J., Oh, D., Kim, D., Kim, K., Kwon, J., Enhanced mechanical properties of ZrO2-Al2O3 dental ceramic composites by altering Al2O3 form, Dental Materials, 2020, V. 36, pp. 117-125, https://doi.org/10.1016/j.dental.2020.01.014.
4. Hussainova, I., Drozdova, M., Perez-Coll, D., Rubio-Marcos, F., Jasiuk, I., Soares, J.A.N.T., Rodnguez, M.A., Electroconductive composite of zirconia and hybrid graphene/alumina nanofibers, Journal of the European Ceramic Society, 2017, V. 37, pp. 3713-3719, https://doi.org/10.1016/j.jeurceramsoc.2016.12.033.
5. Abdullah, M., Ahmad, J., Mehmood, M., Effect of sintering temperature on properties of Al2O3 whisker reinforced 3 mol% Y2O3 stabilized tetragonal ZrO2 (TZ-3Y) nanocomposites, Composites, Part B: Engineering, 2012, V. 43, pp. 1785-1790, https://doi.org/10.1016/j.compositesb.2012.01.021.
6. Leonov, A.A., Abdulmenova, E.V., Alumina-based composites reinforced with singlewalled carbon nanotubes, IOP Conference Series: Materials Science and Engineering, 2019, V. 511, pp. 012001, https://doi.org/10.1088/1757-899X/511/1/012001
7. Leonov, A., Effect of alumina nanofibers content on the microstructure and properties of ATZ composites fabricated by spark plasma sintering, Materials Today: Proceedings, 2019, V. 11, pp. 66-71, https://doi.org/10.1016/j.matpr.2018.12.108.
8. Anstis, G.R., Chantikul, P., Lawn, B.N., Marshall, D.B., A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements, Journal of the American Ceramic Society, 1981, V. 64, No 9, pp. 533-538, https://doi.org/10.1111/j.1151-2916.1981.tb10320.x
9. Leonov, A.A., Paygin, V.D., Tolkachov, O.S., Alishin, T.R. Strukturno-fazovye prevrashcheniya nanovolokon oksida alyuminiya [Structural phase transformations of nanofibers of aluminum oxide], Perspektivnye materialy konstruktsionnogo i meditsinskogo naznacheniya: proceedings of the conference, Tomsk: TPU, 2018, pp. 64-66.
10. Savchenko, N.L., Koroliov, P.V., Melnikov, A.G., Sablina, T.Yu., Kulkov, S.N., Struktura i mekhanicheskie kharakteristiki spechennykh kompozitov na osnove ZrO2-Y2O3-Al2O3 [Structure and mechanical characteristics of sintered composites based on ZrO2-Y2O3-Al2O3], Fundamentalnye problemy sovremennogo materialovedeniya, 2008, V. 5, No 1, pp. 94-99.
11. Podzorova, L.I., Shvorneva, L.I., Ilicheva, A.A., Aladev, N.A., Penkova, O.I., Mikrostruktura i fazovy sostav obraztsov sistemy ZrO2-CeO2-Al2O3 modifitsirovannykh MgO i Y2O3 [Microstructure and phase composition of samples of the ZrO2-CeO2-Al2O3 system modified with MgO and Y2O3], Neorganicheskie materialy, 2013, V. 49, No 4, pp. 389-394.
12. Podzorova, L.I., Ilicheva, A.A., Penkova, O.I. Aladev, N.A., Volchenkova, V.A., Shvorneva, L.I., Modifitsirovannye kompozity sistemy Al2O3-(Ce-TZP) kak materialy meditsinskogo naznacheniya [Modified composites of the Al2O3-(Ce-TZP) system as medical materials], Perspektivnye materialy, 2016, No 1, pp. 32-39.
13. Azar, M., Palmero, P., Lombardi, M., Garnier, V., Montanaro, L., Fantozzi, G., Chevalier, J., Effect of initial particle packing on the sintering of nanostructured transition alumina, Journal of the European Ceramic Society, 2008, V. 28, pp. 1121-1128.
14. Perevislov, S.N., Chupov, V.D., Tomkovich, M.V., Vliyanie aktiviruyushchikh dobavok alyumoittrievogo granata i magnezialnoy shpineli na uplotnyayemost i mekhanicheskie svoistva SiC-keramiki [Influence of activating additives of yttrium aluminum garnet and magnesia spinel on the compaction and mechanical properties of SiC ceramics], Voprosy Materialovedeniya, 2011, No 1 (65), pp. 123-129.
15. Yuan, L., Zhang, P., Zuo, F., Luo, R., Guo, Z., Plucknett, K., Jiang, B., Nie, G., Meng, F., Valcarcel-Juarez, V., Maitre, A., Lin, H., Comparison of sintering behavior and reinforcing mechanisms between 3Y-TZP / Al2O3(w) and 12Ce-TZP/Al2O3(w) composites: Combined effects of lanthanide stabilizer and Al2O3 whisker length, Journal of the European Ceramic Society, 2021, V. 41, pp. 706-718.
16. Ziganshin, I.R., Porozova, S.E., Trapeznikov, Yu.F., Poluchenie poristogo materiala na osnove nanodispersnogo poroshka ZrO2 -15 mol.%SeO2 [Obtaining a porous material based on ZrO2 nanodispersed powder - 15 mol.% CeO2], Voprosy Materialovedeniya, 2010, No 4 (64), pp. 79-84.
17. Porozova, S.E., Kulmeteva, V.B., Ziganshin, I.R., Torsunov, M.F., Sravnitelnaya kharakteristika rezultatov opredeleniya soderzhaniya monoklinnoy fazy v diokside tsirkoniya [Comparative characteristics of the results of determining the content of the monoclinic phase in zirconium dioxide], Voprosy Materialovedeniya, 2010, No 1 (61), pp. 46-52.
18. Obolkina, T.O., Goldberg, M.A., Smirnov, V.V., Smirnov, S.V., Titov, D.D., Konovalov A.A., Kudryavtsev E.A., Antonova O.S., Barinov, S.M., Komlev, V.S., Intensifikatsiya spekaniya i uprochnenie keramicheskikh materialov ZrO2-Al2O3 vvedeniem oksida Fe [Intensification of sintering and strengthening of ceramic materials ZrO2-Al2O3 by introducing Fe oxide], Neorganicheskie materialy, 2020, V. 56, No 2, pp. 192-199.
19. Leonov, A.A., Dvilis, E.S., Khasanov, O.L., Paygin, V.D., Kalashnikov, M.P., Petyukevich M.S., Panina, A.A., Keramichesky kompozit na osnove dioksida tsirkoniya, armirovanny odnostennymi uglerodnymi nanotrubkami [Ceramic composite based on zirconium dioxide, reinforced with single-wall carbon nanotubes], Rossiyskie nanotekhnologii, 2019, V. 14, No 3-4, pp. 32-38.
20. Leonov, A.A., Abdulmenova, E.V., Kalashnikov, M.P., Struktura, fazovy sostav i fiziko-mekhanicheskie svoistva kompozitov na osnove ZrO2 i mnogostennykh uglerodnykh nanotrubok [Structure, phase composition, and physicomechanical properties of composites based on ZrO2 and multiwalled carbon nanotubes], Perspektivnye materialy, 2020, No 10, pp. 56-68.
21. Leonov, A.A., Ivanov, Yu.F., Kalashnikov, M.P., Abdulmenova, E.V., Paygin, V.D., Teresov, A.D., Effect of electron beam irradiation on structural phase transformations of zirconia-based composite reinforced by alumina nanofibers and carbon nanotubes, Journal of Physics: Conference Series, 2019, V. 1393, p. 012106.
22. Ivanov, Yu., Shugurov, V., Kalashnikov, M., Leonov, A., Teresov, A., Petukevich, M., Polisadova, V., Multilevel hierarchical structure formed in the film (Ti)/substrate (SiC-ceramics) system under irradiation by an intense pulsed electron beam, AIP Conference Proceedings, 2018, V. 2051, pp. 020110.
23. Ivanov, V.V., Kaygorodov, A.S., Khrustov, V.R., Paranin, S.N., Spirin, A.V., Prochnaya keramika na osnove oksida alyuminiya, poluchayemaya s ispolzovaniem magnitno-impulsnogo pressovaniya kompozitnykh nanoporoshkov [Durable alumina-based ceramics produced by magnetic-pulse pressing of composite nanopowders], Rossiyskie nanotekhnologii, 2006, V. 1, No 1-2, pp. 201-207.
24. Leonov, A.A., Khasanov, A.O., Danchenko, V.A., Khasanov, O.L., Spark plasma sintering of ceramic matrix composite based on alumina, reinforced by carbon nanotubes, IOP Conference Series: Materials Science and Engineering, 2017, V. 286, p. 012034.
25. Kulmeteva, V.B., Kachenyuk, M.N., Ponosova, A.A., Poluchenie kompozitsionnogo keramicheskogo materiala na osnove ZrO2-Y2O3, modifitsirovannogo mnogosloynym grafenom [Obtaining a composite ceramic material based on ZrO2-Y2O3 modified with multilayer graphene], Materialovedenie, 2017, No 2, pp. 41-48.
Review
For citations:
Leonov A.A., Abdulmenova E.V., Kalashnikov M.P., Li J. Effect of Al2O3 nanofibers on compaction, phase composition, and mechanical properties of ZrO2-based composites obtained by vacuum pressureless sintering. Voprosy Materialovedeniya. 2020;(4(104)):132-143. (In Russ.) https://doi.org/10.22349/1994-6716-2020-104-4-132-143