Preview

Voprosy Materialovedeniya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Influence of climatic factors on the properties of ballistically resistant organoplastics

https://doi.org/10.22349/1994-6716-2020-104-4-144-157

Abstract

Ballistic-resistant organoplastics made from layers of aramid fabric, adhesively bonded by a binder film, exhibit an increased tendency to absorb moisture, water and technical fluids in comparison with organoplastics monolithic structures. The absorption of liquids is anisotropic and manifests itself most intensively through the butt ends of the samples. The use of protective paintwork ensures stability of the characteristics of ballistic-resistant materials when exposed to environmental factors (environment, water, fuel, oil, natural climatic conditions).

 

About the Authors

G. F. Zhelezina
All-Russian Scientific Research Institute of Aviation Materials (FSUE VIAM)
Russian Federation

Cand. Sc. (Eng).
17 Radio St, 105005 Moscow.



N. A. Solovieva
All-Russian Scientific Research Institute of Aviation Materials (FSUE VIAM)
Russian Federation
17 Radio St, 105005 Moscow.


P. M. Shuldeshova
All-Russian Scientific Research Institute of Aviation Materials (FSUE VIAM)
Russian Federation
17 Radio St, 105005 Moscow.


A. Ch. Kan
All-Russian Scientific Research Institute of Aviation Materials (FSUE VIAM)
Russian Federation
17 Radio St, 105005 Moscow.


References

1. Boytsov, B.V., Korotkov, S.S., Krivonos, V.V., Tarasov, Yu.M., Nekotorye voprosy tekhnologicheskogo proektirovaniya konstruktsiy iz polimernykh kompozitsionnykh materialov, rabotayushchikh v ekstremalnykh usloviyakh [Some issues of technological design of structures made of polymer composite materials operating in extreme conditions], Moscow: Akademiya problem kachestva, 2019.

2. Kablov, E.N. Materialy novogo pokoleniya - osnova innovatsiy, tekhnologicheskogo liderstva i natsionalnoy bezopasnosti Rossii [New generation materials are the basis for innovation, technological leadership and national security in Russia], Intellekt i tekhnologii, 2016, No 2 (14), pp. 16-21.

3. Kablov, E.N., Strategicheskie napravleniya razvitiya materialov i tekhnologii ikh pererabotki na period do 2030 goda [Strategic development of materials and technologies of their recycling until 2030], Aviatsionnye materialy i tekhnologii, 2012, No S, pp. 7-17.

4. Krivonos, V.V., Tarasov, Yu.M., Innovatsionnye kompozitnye materialy i tekhnologii v aviastroenii [Innovative composite materials and technologies in aircraft construction], Moscow: Collection of Composites CIS: Digitalization and cost analysis of the product life cycle, Event group Musthavevents, 2018, pp. 23-26.

5. Zhelezina, G.F., Voynov, S.I., Karimbaev, T.D., Chernyshev, A.A., Aramidnye organoplastiki dlya korpusov ventilyatorov aviatsionnykh dvigateley [Aramid Organoplastics for Aircraft Engine Fan Housings], Voprosy Materialovedeniya, 2017, No 32 (90), pp. 153-165.

6. Zhelezina, G.F., Tikhonov, I.V., Chernykh, T.E., Bova, V.G., Voynov, S.I., Aramidnye volokna tretego pokoleniya Rusar NT dlya armirovaniya organotekstolitov aviatsionnogo naznacheniya [Aramid fibers of the third generation Rusar NT for reinforcing organotexolites for aviation], Plasticheskie Massy, 2019, No 3-4, pp. 43-46.

7. Kolobkov, A.S., Polimernye kompozitsionnye materialy dlya razlichnykh konstruktsiy aviatsionnoy tekhniki (obzor) [Polymer composite materials for various designs of aviation technology (review)], Trudy VIAM, 2020, No 6-7, article 05. URL: http://www.viam-works.ru (reference date 04/08/2020). DOI: 10.18577/2307-6046-2020-0-67-38-44.

8. Zhelezina, G.F., Soloveva, N.A., Orlova, L.G., Voynov, S.I., Ballisticheski stoykie aramidnye sloisto-tkanye kompozity dlya aviatsionnykh konstruktsiy [Ballistic resistant aramid laminated woven composites for aircraft structures], Vse materialy. Entsiklopedicheskiy spravochnik. Kompozitsionnye materialy, 2012, No 12, pp. 23-26.

9. Deev, I.S., Kablov, E.N., Kobets, L.P., Chursova, L.V., Issledovanie metodom skaniruyushchey elektronnoy mikroskopii deformatsii mikrofazovoy struktury polimernykh matrits pri mekhanicheskom nagruzhenii [Study by scanning electron microscopy of deformation of the microphase structure of polymer matrices under mechanical loading], Trudy VIAM, 2014, No 7, article 06. URL: http://www.viam-works.ru (reference date 04/08/2020). DOI: 10.18577/2307-6046-2014-0-7-6-6.

10. Erasov, V.S., Krylov, V.D., Panin, S.V., Goncharov, A.A., Ispytaniya polimernogo kompozitsionnogo materiala na udar padayushchim gruzom [Drop weight impact tests on polymer composite materials], Aviatsionnye materialy i tekhnologii, 2013, No 3, pp. 60-64.

11. Zhelezina G.F., Voynov, S.I., Soloveva, N.A., Kulagina, G.S., Aramidnye organotekstolity dlya udarostoykikh aviatsionnykh konstruktsiy [Aramid organotexolites for shock-resistant aircraft structures], Zhurnal prikladnoy khimii, 2019, V. 92, No 3.

12. Valueva, M.I. Sovremennye materialy i tekhnologii dlya polucheniya bronezashchitnykh izdeliy [Modern materials and technologies for obtaining armored products], Voprosy Materialovedeniya, 2017, No 2 (90), pp. 197-207.

13. Roberts, G.D., Revilock, D.M., Biniend, W.K., Nie, W.Z., Mackenzie, S.B., Todd, K.B., Impact Testing and Analysis of Composites for Aircraft Engine Fan Cases, J. Aerosp. Eng., 2002, No 15, pp. 104-110.

14. Li, C.-S., Zhan, M.-S., Huag, X.-C., Zhou, H., Li, Y., Hydrothermal aging mechanisms of aramid fibers via synchrotron small-angle X-ray scattering and dynamic thermal mechanical analysis, Journal of Applied Polymer Science, 2013, V. 128, No 2, pp. 1291-1296.

15. Zhelezina, G.F., Bova, V.G., Voynov, S.I., Kan A.Ch., Perspektivy ispolzovaniya gibridnykh tkaney na osnove uglerodnykh i aramidnykh volokon v kachestve armiruyushchego napolnitelya polimernykh kompozitsionnym materialov [Prospects for the use of hybrid fabrics based on carbon and aramid fibers as a reinforcing filler for polymer composite materials], Voprosy Materialovedeniya, 2019, No 2 (98).

16. Bourke, P., Lightweight Ballistic impact on composite armor, Ballistic impact on composite armor, 2007.

17. Shuldeshova, P.M., Zhelezina, G.F. Aramidny sloisto-tkanyi material dlya zashchity ot ballisticheskikh i udarnykh vozdeystviy [Aramid laminated woven fabric for ballistic and impact protection], Trudy VIAM, 2014, No 9, article 06. URL: http://www.viam-works.ru (reference date 20/06/2020). DOI: 10.18577/2307-6046-2014-0-9-6-6.

18. Timoshkov, P.N., Khrulkov, A.V., Sovremennye tekhnologii pererabotki polimernykh kompozitsionnykh materialov, poluchayemykh metodom propitki rasplavnym svyazuyushchim [Modern technologies for processing polymer composite materials obtained by impregnation with a melt binder], Trudy VIAM, 2014, No 8, article 04. URL: http://www.viam-works.ru (reference date 03/08/2020). DOI: 10.18577/2307-6046-2014-0-8-4-4.

19. Zhelezina, G.F., Osobennosti razrusheniya organoplastikov pri udarnykh vozdeystviyakh [Features of the destruction of organoplastics under shock impacts], Aviatsionnye materialy i tekhnologii, 2012, No S, pp. 272-277.

20. Kablov, E.N., Startsev, V.O., Inozemtsev, A.A., Vlagonasyshchenie konstruktivno-podobnykh elementov iz polimernykh kompozitsionnykh materialov v otkrytykh klimaticheskikh usloviyakh s nalozheniem termotsiklov [Moisture saturation of structurally similar elements made of polymer composite materials in open climatic conditions with the imposition of thermal cycles], Aviatsionnye materialy i tekhnologii, 2017, No 2, pp. 56-68. DOI: 10.18577/2071-9140-2017-0-2-56-58.

21. Gladkikh, A.V., Kurs, I.S., Kurs, M.G., Analiz dannykh naturnykh klimaticheskikh ispytaniy, sovmeshchennykh s prilozheniem ekspluatatsionnykh faktorov, nemetallicheskikh materialov (obzor) [Analysis of the data of full-scale climatic tests, combined with the application of operational factors, non-metallic materials (review)], Trudy VIAM, 2018, No 10, article 09. URL: http://www.viam-works.ru (reference date 03/08/2020). DOI: 10.18577/2307-6046-2018-0-10-74-82.

22. Startsev O.V., Krotov A.S., Golub P.D., Effect of climatic and radiation ageing on properties of glass fibre reinforced epoxy laminates, Polymers and Polymer Composites, 1998, V. 6, No 7. pp. 481-488.

23. Derombise, G., Vouyovitch Van Schoors, L., Davies, P., Degradation of aramid fibers under alkaline and neutral conditions: Relations between the chemical characteristics and mechanical properties, Journal of Applied Polymer Science, 2010, V. 116, No 5, pp. 888-898.

24. Derombise, G., Chailleux, E., Forest, B., Riou, L., Lacotte, N., Vouyovitch Van Schoors, L., Davies, P., Long-term mechanical behavior of aramid fibers in seawater, Polymer Engineering & Science, 2011, V. 51, No 7, pp. 1366-1375.

25. Tikhonov, I.V., Tokarev, A.V., Shorin, S.V., Shchetinin, V.M., Chernykh, T.E., Bova, V.G., Russian aramid fibres: past-present-future, Fibre Chemistry, 2013, No 5, pp. 1-8.

26. Gaydansky, A.I., Tarasov, Yu.M., Krivonos, V.V., Boytsov, B.V., Kompleks issledovaniy dlya obespecheniya razarbotki i izgotovleniya trebuemogo kachestva konstruktsii konsoli kryla iz kompozitsionnykh materialov dlya perspektivnykh grazhdanskikh samoletov [A set of studies to ensure the development and manufacture of the required quality of the wing console structure made of composite materials for promising civil aircraft], Nauchnye trudy Akademii problem kachestva, Special issue, Moscow: Ministry of Education and Science of the Russian Federation, 2016, pp. 378-385.

27. Startsev, V.O., Makhonkov, A.Yu., Kotova, E.A., Mekhanicheskie svoystva i vlagostoykost PKM s povrezhdeniyami [Mechanical properties and moisture resistance of damaged PCM], Aviatsionnye materialy i tekhnologii, 2015, No S1, pp. 49-55. DOI 10.18577/2071-9140-2015-0-S1-49-55.

28. Kablov, E.N., Startsev, O.V., Sistemny analiz vliyaniya klimata na mekhanicheskie svoystva polimernykh kompozitsionnykh materialov po dannym otechestvennykh i zarubezhnykh istochnikov (obzor) [Systematic analysis of the climate effect on the mechanical properties of polymer composite materials according to the data of domestic and foreign sources (review)], Aviatsionnye materialy i tekhnologii, 2018, No 2, pp. 47-58. DOI: 10.18577/2071-9140-2018-0-2-47-58.

29. Kablov, E.N., Startsev, O.V., Fundamentalnye i prikladnye issledovaniya korrozii i stareniya materialov v klimaticheskikh usloviyakh (obzor) [Fundamental and applied research on corrosion and aging of materials in climatic conditions (review)], Aviatsionnye materialy i tekhnologii, 2015, No 4 (37), pp. 38-52. DOI: 10.18577/2071-9140-2015-0-4-38-52.

30. Kablov, E.N., Startsev, O.V., Krotov, A.S., Kirillov, V.N., Klimaticheskoe starenie kompozitsionnykh materialov aviatsionnogo naznacheniya. I. Mekhanizmy stareniya [Climatic aging of composite materials for aviation purposes. I. Mechanisms of aging], Deformatsiya i razrushenie materialov, 2010, No 11, pp. 19-27.


Review

For citations:


Zhelezina G.F., Solovieva N.A., Shuldeshova P.M., Kan A.Ch. Influence of climatic factors on the properties of ballistically resistant organoplastics. Voprosy Materialovedeniya. 2020;(4(104)):144-157. (In Russ.) https://doi.org/10.22349/1994-6716-2020-104-4-144-157

Views: 258


ISSN 1994-6716 (Print)