Preview

Voprosy Materialovedeniya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Composition and morphology of hot-salt corrosion in heat resistant nickel alloys

https://doi.org/10.22349/1994-6716-2021-105-1-107-115

Abstract

This article investigates the change in the structure of heat-resistant nickel alloys doped with cobalt, chromium, molybdenum, aluminum, niobium, tungsten and titanium and aluminum, cobalt, rhenium, tantalum, ruthenium, molybdenum, tungsten and chromium under the influence of a solution of 75% Na2SO4 + 25% NaCl in temperature range 600–750°C. As the results of the study show, a corrosive film of a layer struc- ture based on oxides of chromium, aluminum, nickel and nickel sulfides is formed on the metal surface. It has been established that the nature of corrosion destruction of metal depends on the composition and content of alloying elements in it.

About the Authors

D. A. Movenko
All-Russian Scientific Research Institute of Aviation Materials (FSUE VIAM)
Russian Federation

Movenko D. A., Cand Sc. (Eng)

17 Radio St, 105005 Moscow



A. B. Laptev
1All-Russian Scientific Research Institute of Aviation Materials (FSUE VIAM)
Russian Federation

Laptev A. B., Dr Sc (Eng)

17 Radio St, 105005 Moscow



O. A. Zagorskykh
UEC-Perm Engine
Russian Federation

Zagorskykh O. A. 

93 Komsomolsky Ave, 614010, Perm



References

1. Kablov, E. N., Sidorov, V. V., Kablov, D. E., Min, P. G., Metallurgicheskie osnovy obespecheniya vysokogo kachestva monokristallicheskikh zharoprochnykh nikelevykh splavov [Metallurgical basis for ensuring high quality of single-crystalline heat-resistant nickel alloys], Aviatsionnye materialy i tekhnologii, 2017, No S, pp. 55–71. DOI: 10.18577/2071-9140-2017-0-S-55-71.

2. Petrushin, N. V., Ospennikova, O. G., Svetlov, I. L., Monokristallicheskie zharoprochnye nikelevye splavy dlya turbinnykh lopatok perspektivnykh GTD [Monocrystalline heat-resistant nickel alloys for turbine blades of promising gas turbine engines], Aviatsionnye materialy i tekhnologii, 2017, No S, pp. 72–103. DOI: 10.18577/2071-9140-2017-0-S-72-103.

3. Bazyleva, O. A., Arginbaeva, E. G., Lutskaya, S. A., Metody povysheniya korrozionnoy stoykosti zharoprochnykh nikelevykh splavov (obzor) [Methods for increasing the corrosion resistance of heatresistant nickel alloys (review)], Trudy VIAM, 2018, No 4, Issue 01. URL: http://www.viam-works.ru (reference date 18/08/2020). DOI: 10.18577/2307-6046-2018-0-4-3-8.

4. Kablov, E. N., Startsev, O. V., Medvedev, I. M., Obzor zarubezhnogo opyta issledovanii korrozii i sredstv zashchity ot korrozii [Overview of developments of corrosion and way of corrosion protection foreign experience], Aviatsionnye materialy i tekhnologii, 2015, No 2, pp. 76–87, DOI: 10.18577/20719140-2015-0-2-76-87.

5. Kablov, E. N., Innovatsionnye razrabotki VIAM po realizatsii “Strategicheskikh napravlenii razvitiya materialov i tekhnologii ikh pererabotki na period do 2030 goda” [Innovate developments of the AllRussian Scientific Research Institute of Aviation Materials within the project of “Strategic development of materials and technologies of their recycling until 2030”], Aviatsionnye materialy i tekhnologii, 2015, No 1, pp. 3–33, DOI: 10.18577/2071-9140-2015-0-1-3-33.

6. Getsov, L. B., Laptev, A. B., Puzanov, A. I., Shelyapina, N. M., Sulfidno-oksidnaya korroziya sovremennykh zharoprochnykh splavov [Sulfide-oxide corrosion of modern high-temperature alloys], Izvestiya vysshikh uchebnykh zavedeniy. Aviatsionnaya tekhnika, 2019, No 4, pp. 150–155.

7. Pradhan, D., Mahobia, G.S., Chattopadhyay, K., Singh, V., Salt induced corrosion behaviour of superalloy IN718, Materials Today: Proceedings, 2018, V. 5, pp. 7047–7054.

8. Medvedev, I.M., Nikitin, Ya.Yu., Puzanov, A.I., Laptev, A.B., Metody ispytaniy zharoprochnykh splavov na stoykost k sulfidno-oksidnoy korrozii (obzor) [Methods for testing hightemperature alloys for resistance to sulfide-oxide corrosion (review)], Trudy VIAM, 2018, No 11. URL: http://www.viam-works.ru (reference date 18/08/2020). DOI: 10.18577/2307-6046-2018-0-11-93-100.

9. Zhang, T.-B., Dong, R.-F., Hu, R., et al., Hot corrosion characteristics of Ni−20Cr−18W superalloy in molten salt, Transactions of Nonferrous Metals Society of China, 2015, V. 25, pp. 3840−3846.

10. Kosmin, A. A., Budinovsky, S. A., Matveev, P. V., Smirnov, A. A., Issledovanie zharoprochnogo splava ZhS36 s razlichnymi tipami ionno-plazmennykh zashchitnykh pokrytiy na stoykost k sulfidno-oksidnoy korrozii v oblasti temperatur 850–900°C [Study of high-temperature alloy ZhS36 with various types of ion-plasma protective coatings for resistance to sulfide-oxide corrosion in the temperature range of 850–900°С], Trudy VIAM, 2015, No 12, Issue 05. URL: http://www.viam-works.ru (reference date 18/08/2020). DOI: 10.18577/2307-6046-2015-0-12-5-5.

11. Cho, S.-H., Hur, J.-M., Seo, C.-S., et al., Hot corrosion behavior of Ni-base alloys in a molten salt under an oxidizing atmosphere, Journal of Alloys and Compounds, 2009, V. 468, Issues 1–2, pp. 263–269.

12. Lomberg, B. S., Belous, V. Ya., Varlamova, V. E., Filonova, E. V., Stoikost zharoprochnykh granulirovannykh diskovykh splavov VV750PD, VV750P i VV751P k sulfidno-oksidnoy korrozii pri rabochikh temperaturakh (650–800°C) [Resistance of high-temperature granular disc alloys VV750PD, VV750P and VV751P to sulfide-oxide corrosion at operating temperatures (650...800°C)], Korroziya: materialy, zashchita, 2014, No 3, pp. 14–20.

13. Eliaz, N., Shemesh, G., Latanision, R. M., Hot corrosion in gas turbine components, Engineering Failure Analysis, 2002, V. 9, Issue 1, pp. 31–43.

14. Guangyan, F., Zeyan, Q., Jingyu, C., et al., Hot corrosion behavior of Ni-base alloys coated with salt film of 75 % Na<sub>2</sub>SO<sub>4</sub> + 25 % NaCl at 900°C, Rare Metal Materials and Engineering, 2015, V. 44, Issue 5, pp. 1112–1115.

15. Li, W., Liu, Y., Wang, Y., et al., Hot corrosion behavior of Ni-16Cr-xAl based alloys in mixture of Na<sub>2</sub>SO<sub>4</sub> – NaCl at 600°C, Transactions of Nonferrous Metals Society of China, 2011, V. 21, Issue 12, pp. 2617–2625.

16. Liu, E., Zheng, Z., Guan, X., et al., Influence of Pre-oxidation on the Hot Corrosion of DZ68 Superalloy in the Mixture of Na2SO4-NaCl, Journal of Materials Science & Technology, 2010, V. 26, Issue 10, pp. 895–899.

17. Getsov, L. B., Materialy i prochnost detaley gazovykh turbin [Materials and strength of gas turbine parts], Moscow: Nedra, 1996.

18. Saunders, S. R. J., Nicholls, J. R., Hot salt corrosion test procedures and coating evaluation, Metallurgical and Protective coatings. Thin solid films, 1984, V. 119, pp. 247–269.


Review

For citations:


Movenko D.A., Laptev A.B., Zagorskykh O.A. Composition and morphology of hot-salt corrosion in heat resistant nickel alloys. Voprosy Materialovedeniya. 2021;(1(105)):107-115. (In Russ.) https://doi.org/10.22349/1994-6716-2021-105-1-107-115

Views: 280


ISSN 1994-6716 (Print)