Preview

Voprosy Materialovedeniya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Structural integrity assessment and lifetime prediction for the control rods couplings of the WWER-440 reactor. Part 3. Optimi- zation of post-irradiation recovery annealing of the control rods couplings

https://doi.org/10.22349/1994-6716-2021-105-1-177-191

Abstract

The optimization of post-irradiation recovery annealing of metal of control rods couplings (marten- sitic-ferritic stainless steel 14Kh17N2 grade, analogue of AISI 431 steel) is carried out. It is shown that the optimized recovery annealing leads to complete recovery of the mechanical properties of coupling metal embrittled under neutron irradiation. The recovery annealing does not reduce corrosion resistance of control rod tube made of austenitic stainless steel 08Kh18N10T grade (analogue of AISI 321 steel).

About the Authors

A. J. Minkin
NRC “Kurchatov Institute” – CRISM “Prometey” 49 Shpalernaya St, 191015 St Petersburg
Russian Federation

Minkin A. J.

49 Shpalernaya St, 191015 St Petersburg



B. Z. Margolin
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

Margolin B. Z., Dr Sc. (Eng)

49 Shpalernaya St, 191015 St Petersburg



L. A. Belyaeva
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

Belyaeva L. A., Cand Sc. (Eng)

49 Shpalernaya St, 191015 St Petersburg



N. E. Pirogova
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

Pirogova N. E.

49 Shpalernaya St, 191015 St Petersburg



A. M. Shumko
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

Shumko A. M.

49 Shpalernaya St, 191015 St Petersburg



S. N. Petrov
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

Petrov S. N., Cand Sc. (Chem)

49 Shpalernaya St, 191015 St Petersburg



References

1. Alekseenko, N.N., Amaev, A.D., Gorynin, I.V., Nikolaev, V.A., Radiatsionnoe povrezhdenie stali korpusov vodo-vodyanykh reaktorov [Radiation damage to the steel of water-water energetic reactors], Moscow: Energoatomizdat, 1981.

2. Margolin, B. Z., Shvetsova, V.A., Gulenko, A.G., Radiation embrittlement modeling in multiscale approach to brittle fracture of RPV steel, Int. J. of Fracture, 2013, V. 179, No 1–2, pp. 87–108.

3. Yurchenko, E. V., Margolin, B.Z., Morozov, A.M., et al., Analysis of a link of embrittlement mechanisms and neutron flux effect as applied to reactor pressure vessel materials of WWER, Int. J. Nucl. Mater., 2013, V. 434, pp. 347–356.

4. Utevsky, L.M., Glikman, E.E., Kark, G.S., Obratimaya otpusknaya khrupkost stali i splavov zheleza [Reversible temper brittleness of steel and iron alloys], Moscow: Metallurgiya, 1987.

5. Lejcek, P., Grain boundary segregation in metals, Springer Series, 2010. URL: https://www.researchgate.net/publication/253158369_Grain_Boundary_Segregation_in_Metals (reference date 21/03/2021).

6. Margolin, B., Yurchenko, E., Potapova, V., Pechenkin, V., On the modelling of thermal aging through neutron irradiation and annealing, Advances in Materials Science and Engineering, Hindawi publ., V. 2018. URL: https://doi.org/10.1155/2018/7175083 (reference date 21/03/2021).

7. Pogodin, V. P., Bogoyavlensky, V. L., Sentyurev, V. P., Mezhkristallitnaya korroziya i korrozionnoe rastreskivanie nerzhaveyushchikh staley v vodnykh sredakh [Intergranular corrosion and corrosion cracking of stainless steels in aqueous media], Moscow: Atomizdat, 1970.

8. Fujii, T., Tohgo, K., Kenmochi, A., Shimamura, Yo., Experimental and numerical investigation of stress corrosion cracking of sensitized type 304 stainless steel under high-temperature and high-purity water, Corrosion Science, 2015, V. 97, pp. 139–149. URL: https://www.sciencedirect.com/science/article/pii/S0010938X15001948 (reference date 21/03/2021).

9. Kolli, S., Javaheri, V., Ohligschläger, T., et al., The importance of steel chemistry and thermal history on the sensitization behavior in austenitic stainless steels: Experimental and modeling assessment, Materials Today Communications, 2020, V. 24.

10. Rybin, V. V., Bolshie plasticheskie deformatsii i razrushenie metallov [Large plastic deformation and destruction of metals], Moscow: Metallurgiya, 1986.

11. Technical Conditions 108.11.853-87. Hot rolled and forged bars.

12. Margolin, B. Z., Gulenko, A.G., Fomenko, V.N., Kostylev, V.I., Further improvement of the Prometey model and unified curve method. Part 2: Improvement of the unified curve method, Int. J. Eng. Fract. Mech., 2018, V. 191, pp. 383–402.


Review

For citations:


Minkin A.J., Margolin B.Z., Belyaeva L.A., Pirogova N.E., Shumko A.M., Petrov S.N. Structural integrity assessment and lifetime prediction for the control rods couplings of the WWER-440 reactor. Part 3. Optimi- zation of post-irradiation recovery annealing of the control rods couplings. Voprosy Materialovedeniya. 2021;(1(105)):177-191. (In Russ.) https://doi.org/10.22349/1994-6716-2021-105-1-177-191

Views: 263


ISSN 1994-6716 (Print)