

On the intermetallic nickel alloy for the manufacture of parts by equiaxial casting and additive technologies
https://doi.org/10.22349/1994-6716-2021-106-2-38-46
Abstract
The article presents the results of studies of compositions of intermetallic nickel alloy based on casting single-crystal rhenium containing VKNA-25 grade alloy for the manufacture of parts by the methods of additive technologies. It is shown that an increase in the carbon content, as well as carbide-forming elements, while observing the known conditions for the balance of chemical and phase compositions, made it possible to find the composition of the material for which the patent of the Russian Federation was obtained.
Keywords
About the Authors
E. G. ArginbaevaRussian Federation
Cand Sc. (Eng)
17 Radio St, 105005 Moscow
O. A. Bazyleva
Russian Federation
Cand Sc. (Eng)
17 Radio St, 105005 Moscow
A. G. Evgenov
Russian Federation
Cand Sc. (Eng)
17 Radio St, 105005 Moscow
S. M. Prager
Russian Federation
17 Radio St, 105005 Moscow
References
1. Kablov, E.N., Nastoyashchee i budushchee additivnykh tekhnologiy [Present and future of additive technologies], Metally Evrazii, 2017, No 1, pp. 2–6.
2. Kablov E.N., Additivnye tekhnologii – dominanta natsionalnoy tekhnologicheskoy initsiativy [Additive technologies dominate the national technology initiatives], Intellekt i tekhnologii, 2015, No 2 (11), pp. 52–55.
3. Sufiyarov, V.Sh., Popovich, A.A., Borisov, E.V., Polozov, I.A., Selektivnoe lazernoe plavlenie zharoprochnogo nikelevogo splava [Selective laser melting of heat resistant nickel alloy], Tsvetnye metally, 2015, No 1 (865), pp. 79–84.
4. Yadroitsev, I., Smurov, I., Selective laser technology: from the single laser melted track stability to 3D parts of complex shape, Physics Procedia, 2010, V. 5, pp. 551–560.
5. Evgenov, A.G., Gorbovets, M.A., Prager, S.M., Struktura i mekhanicheskie svoystva zharoprochnykh splavov VZh159 i EP648, poluchennykh metodom selektivnogo lazernogo splavleniya [Structure and mechanical properties of VZh159 and EP648 high-temperature alloys obtained by selective laser alloying], Aviatsionnye materialy i tekhnologii, 2016, No S1 (43), pp. 8–15. DOI: 10.18577/2071-9140-20160-S1-8-15. https://3d-daily.ru/technology/additive-manufacturing-materials.html
6. Bazyleva, O.A., Ospennikova, O.G., Arginbaeva, E.G., Letnikova, E.Yu., Shestakov, A.V., Tendentsii razvitiya intermetallidnykh splavov na osnove nikelya [Trends in the development of nickel-based intermetallic alloys], Aviatsionnye materialy i tekhnologii, 2017, No S, pp. 104–115. DOI 10.18577/2071-9140-2017-0-S-104-115.
7. Bazyleva, O.A., Arginbaeva, E.G., Shestakov, A.V., Kolyadov, E.V., Strukturnye parametry i mekhanicheskie svoystva intermetallidnogo splava na osnove nikelya, poluchennogo metodom napravlennoy kristallizatsii [Structural parameters and mechanical properties of nickel-based intermetallic alloy obtained by directional solidification], Trudy VIAM, 2015, No 12, Issue 01. DOI: 10.18577/2307-60462015-0-12-1-1. URL: http://www.viam-works.ru (reference date 19/06/2019).
8. Buntushkin, V.P., Burkina, V.I., Timofeeva, O.B., Yushakova, F.V., Sostav, struktura i svoystva monokristallicheskogo splava VKNA-25 [Composition, structure and properties of VKNA-25 monocrystalline alloy], Aviatsionnye materialy i tekhnologii, 2008, No 1, pp. 10–14.
9. Kablov, E.N., Ospennikova, O.G., Petrushin, N.V., Novy monokristallichesky intermetallidny zharoprochny splav na osnove γ-fazy dlya lopatok GTD [New monocrystalline intermetallic superalloy based on γ-phase for GTE blades], Aviatsionnye materialy i tekhnologii, 2015, No 1 (34), pp. 34−40. DOI: 10.18577/2071-9140-2015-0-1-34-40.
10. Sidorov, V.V., et al., Vysokoeffektivnye tekhnologii i sovremennoe oborudovanie dlya proizvodstva shikhtovykh zagotovok iz liteynykh zharoprochnykh splavov [Highly efficient technologies and modern equipment for the production of charge blanks from cast heat-resistant alloys], Metallurg, 2012, No 5, pp. 26–30.
11. Karachevtsev, F.N., Zagvozdkina, T.N., Orlov, G.V., Razrabotka i issledovanie metrologicheskikh kharakteristik ekspress-metodiki analiza zharoprochnykh nikelevykh splavov [Development and study of the metrological characteristics of the express method for the analysis of heat-resistant nickel alloys], Trudy VIAM, 2015, No 11, Issue 09, DOI: 10.18577/2307-6046-2015-0-11-9-9. URL: http://www.viam-works.ru (reference date 15/06/2019).
12. Morozova, G.I., Sbalansirovannoe legirovanie zharoprochnykh nikelevykh splavov [Balanced alloying of high-temperature nickel alloys], Metally, 1993, No 1, pp. 38–41.
13. Bazyleva, O.A., Povarova, K.B., Kazanskaya, N.K., Drozdov, A.A., Liteinye splavy na osnove Ni3Al i sposob ikh vyplavki [Casting alloys based on Ni3Al and the method of their moulding], Zagotovitelnye proizvodstva v mashinostroenii, 2010, No 1, pp. 29–35.
14. Bazyleva, O.A., Kablov, E.N., Fomin, A.A., Prokofiev, V.P., Liteiny vysokotemperaturny zharostoiky splav [Casting high-temperature heat-resistant alloy], Materialovedenie, 2005, No 2, pp. 27–31.
15. Kablov, E.N., Buntushkin, V.P., Morozova, G.I., Bazyleva, O.A., Osnovnye printsipy legirovaniya intermetallida Ni3Al pri sozdanii vysokotemperaturnykh splavov [Basic principles of alloying Ni3Al intermetallic compound when creating high-temperature alloys], Materialovedenie, 1998, No 7, pp. 13–15.
16. Morozova, G.I., Kompensatsiya disbalansa legirovaniya zharoprochnykh nikelevykh splavov [Alloying imbalance compensation for high-temperature nickel alloys], MiTOM, 2012, No 12, pp. 52–58.
17. Kablov, E.N., Innovatsionnye razrabotki VIAM po realizatsii “Strategicheskikh napravlenii razvitiya materialov i tekhnologii ikh pererabotki na period do 2030 goda” [Innovative developments of the AllRussian Scientific Research Institute of Aviation Materials within the project “Strategic development of materials and technologies of their recycling until 2030”], Aviatsionnye materialy i tekhnologii, 2015, No 1, pp. 3– 33, DOI: 10.18577/2071-9140-2015-0-1-3-33.
Review
For citations:
Arginbaeva E.G., Bazyleva O.A., Evgenov A.G., Prager S.M. On the intermetallic nickel alloy for the manufacture of parts by equiaxial casting and additive technologies. Voprosy Materialovedeniya. 2021;(2(106)):38-46. (In Russ.) https://doi.org/10.22349/1994-6716-2021-106-2-38-46