Preview

Voprosy Materialovedeniya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

On the influence of ion-plasma treatment on the surface properties of reinforcing fillers

https://doi.org/10.22349/1994-6716-2021-107-3-136-149

Abstract

This article presents the results of a study of the hydrophilic properties of VMPS-10 84x4 glass filaments and SYT-49S 12K carbon tows. It has been found that the contact angle of glass and carbon fibers, which decreases after ion-plasma treatment, returns to its original values within 8 days. The capillarity values of both types of fibers increase irreversibly, but for carbon fibers, we observe a more significant change in this parameter. In the course of studying the microstructure of the surface of filler fibers before and after processing, it was found that all samples were uniformly covered with a film of an active lubricant with a microdispersed structure; however, for glass fibers, the size of the sizing particles increased during processing, and for carbon fibers, it decreased. In addition, thermophysical studies of the used reinforcing fillers were carried out, and it was found that during the ion-plasma modification, the erosion of the sizing film occurred.

About the Authors

E. D. Kolpachkov
Federal State Unitary Enterprise “All-Russian Scientific Research Institute of Aviation Materials” (FSUE VIAM)
Russian Federation

Cand Sc. (Eng)

17 Radio St, 105005 Moscow



P. S. Marakhovsky
Federal State Unitary Enterprise “All-Russian Scientific Research Institute of Aviation Materials” (FSUE VIAM)
Russian Federation

Dr Sc. (Eng)

17 Radio St, 105005 Moscow



A. P. Petrova
Federal State Unitary Enterprise “All-Russian Scientific Research Institute of Aviation Materials” (FSUE VIAM)
Russian Federation

17 Radio St, 105005 Moscow



P. A. Shchur
Moscow Aviation Institute (National Research University)
Russian Federation

4 Volokolamskoe roadway, 125993 Moscow



S. L. Lonsky
Federal State Unitary Enterprise “All-Russian Scientific Research Institute of Aviation Materials” (FSUE VIAM)
Russian Federation

17 Radio St, 105005 Moscow



I. Yu. Chernyaeva
Moscow Aviation Institute (National Research University)
Russian Federation

Cand Sc. (Eng)

4 Volokolamskoe roadway, 125993 Moscow



A. V. Shvedov
Moscow Aviation Institute (National Research University)
Russian Federation

4 Volokolamskoe roadway, 125993 Moscow



References

1. Basharov, E.A., Vagin, A.Yu., Analiz primeneniya kompozitsionnykh materialov v konstruktsii planerov vertoletov [Analysis of usage of composite materials in the design of helicopter gliders], Trudy MAI, 2017, No 92, pp. 1–33.

2. Buznik, V.M., Kablov, E.N., Arkticheskoe materialovedenie [Arctic materials science], Tomsk: Tomsk State University Publishing House, 2018. ISBN 978-5-94621-749-1

3. Kablov, E.N., Sovremennye materialy – osnova innovatsionnoi modernizatsii Rossii [Modern materials are the basis of innovate modernization of Russia], Metally Evrazii, 2012, No 3, pp. 10–15.

4. Kablov, E.N., Materialy i khimicheskie tekhnologii dlya aviatsionnoi tekhniki [Materials and chemical technologies for aircraft engineering], Vestnink Rossiyskoy Akademii Nauk, 2012, V. 82, No 6, pp. 520–530.

5. Lipatov, Yu.S., Mezhfaznye yavleniya v polimerakh [Interfacial phenomena in polymers], Kiev: Naukova Dumka, 1980.

6. Gulyaev, A.I., Izmerenie adgezionnoy prochnosti “volokno–matritsa” s primeneniem nanoindentirovaniya [Measurement of fiber-to-matrix adhesion strength using nanoindentation]: a review, Trudy VIAM, 2019, No 3, Issue 75. URL: http://www.viam-works.ru (reference date 02/06/2021). DOI: 10.18577/2307-6046-2019-0-3-68-78.

7. Gulyaev, A.I., Medvedev, P.N., Sbitneva, S.V., Petrov, A.A., Eksperimentalnoe issledovanie po otsenke adgezionnoy prochnosti “volokno–matritsa” v ugleplastikakh na osnove epoksidnogo svyazuyushchego, modifitsirovannogo polisulfonom [Experimental study to assess the adhesion strength of the “fiber-matrix” in carbon fiber-reinforced plastics based on an epoxy binder modified with polysulfone], Aviatsionnye materialy i tekhnologii, 2019, No 4, pp. 80–86. DOI: 10.18577/2071-9140-2019-0-4-80-86.

8. Kudryavtseva, A.N., Terekhov, I.V., Gurevich, Ya.M., Grigoreva, K.N., Modifikatsiya epoksidnykh svyazuyushchikh dlya PKM rezortsinom [Resorcinol modification of epoxy binders for PCM], Trudy VIAM, 2019, No 2, Issue 04. URL: http://www.viam-works.ru (accessed June 02, 2021). DOI: 10.18577/2307-6046-2019-0-2-35-42.

9. Kotomin, S.V., Otsenka adgezionnoy prochnosti svyazi volokno-termoplastichnaya matritsa metodom petli [Evaluation of the adhesion strength of the fiber-thermoplastic matrix bond by the loop method], Inzhenerny zhurnal: nauka i innovatsii, 2015, No 12 (48), pp. 1–10. URL: https://cyberleninka.ru (reference date 13/03/2021).

10. Bogdanova, Yu.G., Adgeziya i ee rol v obespechenii prochnosti polimernykh kompozitov [Adhesion and its role in ensuring the strength of polymer composites]: textbook for students of “Composite nanomaterials”, Moscow: MGU, 2010.

11. Kurnosov, A.O., Vavilova M.I., Melnikov D.A., Tekhnologii proizvodstva steklyannykh napolniteley i issledovanie vliyaniya appretiruyushchego veshchestva na fiziko-mekhanicheskie kharakteristiki stekloplastikov [Technologies for the production of glass fillers and a study of the effect of a sizing agent on the physical and mechanical characteristics of fiberglass], Aviatsionnye materialy i tekhnologii, 2018, No 1, pp. 64–70. DOI: 10.18577/2071-9140-2018-0-1-64-70.

12. Tikhomirov, A.S., Sorokina, N.E., Avdeev, V.V., Modifitsirovanie poverkhnosti uglerodnogo volokna rastvorami azotnoy kisloty [Modification of the carbon fiber surface with nitric acid solutions], Neorganicheskie materialy, 2011, No 6 (47), pp. 684–688.

13. Li, J., Sun, F.F., The effect of nitric acid oxidization treatment on the interface of carbon fiberreinforced thermoplastic polystyrene composite, Polym.-Plast. Technol. And Eng, 2009, No 7 (48), pp. 711–715.

14. Vinke, P., Vander Eijk M., Verbree, M., A.F. Voskamp, A.F., Van Bekkum, H., Modification of the surfaces of a gas activated carbon and a chemically activated carbon with nitric acid, hypochlorite and ammonia, Carbon, 1994, V. 32, No 4, pp. 675–686.

15. Moreno-Castilla, C., Ferro-Garcia, M.A., Joly, J.P., Bautista-Toledo, I., Carrasco-Marin, F., Rivera-Utrilla, J., Activated сarbon surface modifications by nitric acid, hydrogen peroxide and ammonium peroxydisulfate treatments, Langmuir, 1995, V. 11, No 11, pp. 4386–4392.

16. Sergeeva, E.A., Ibatullina, A.R., Izmenenie poverkhnostnykh i fiziko-mekhanicheskikh svoystv aramidnykh volokon, modifitsirovannykh potokom plazmy vysokochastotnogo emkostnogo razryada ponizhennogo davleniya [Changes in the surface and physicomechanical properties of aramid fibers modified by the plasma flow of a high-frequency capacitive discharge of reduced pressure], Vestnik Kazanskogo tekhnologicheskogo universiteta, 2012, No 4, pp. 63–66.

17. Garifullin, A.R., Issledovanie svoystv uglerodnykh volokon, modifitsirovannykh vysokochastotnym emkostnym razryadom [Study of the properties of carbon fibers modified by a high-frequency capacitive discharge], Vestnik Kazanskogo tekhnologicheskogo universiteta, 2014, No 18, pp. 32–34.

18. Garifullin, A.R., Abdullin, I.SH., Plazmennaya gidrofilizatsiya uglerodnoy lenty dlya sozdaniya kompozitsionnykh materialov s povyshennymi prochnostnymi kharakteristikami, Vestnik Kazanskogo tekhnologicheskogo universiteta, 2014, No 17, pp. 101–102.

19. Garifullin, A.R., Abdullin, I.Sh., Skidchenko, E.A., Issledovanie plazmennogo vozdeystviya na prochnost soedineniya uglerodnogo volokna s epoksidnoy matritsey pri poluchenii kompozitsionnykh materialov [Study of plasma impact on the strength of carbon fiber bonding with an epoxy matrix in the production of composite materials], Vestnik Kazanskogo tekhnologicheskogo universiteta, 2014, No 21, pp. 69–70. URL: https://cyberleninka.ru (reference date 13/03/2021).


Review

For citations:


Kolpachkov E.D., Marakhovsky P.S., Petrova A.P., Shchur P.A., Lonsky S.L., Chernyaeva I.Yu., Shvedov A.V. On the influence of ion-plasma treatment on the surface properties of reinforcing fillers. Voprosy Materialovedeniya. 2021;(3(107)):136-149. (In Russ.) https://doi.org/10.22349/1994-6716-2021-107-3-136-149

Views: 277


ISSN 1994-6716 (Print)