Preview

Voprosy Materialovedeniya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Structure and mechanical properties of high strength austenitic Mn–Ni–Cu–V–C dispersionally hardened steel

https://doi.org/10.22349/1994-6716-2021-108-4-07-22

Abstract

The paper presents the results of a study of the structure and mechanical properties of high-strength austenitic dispersionally hardened Mn–Ni–V–C steel with a yield strength of at least 700 MPa. Its composition and the hardening method were selected so that the steel meets the requirements for high strength and nonmagnetic properties. It is shown that the introduction of 1–2% Cu into Mn–Ni–V–C steel expands the region of existence of the γ-phase in the Fe–Ni–Mn phase diagram, narrows the two-phase γ+α-region and shifts it towards lower Mn contents, increasing stability of austenite to martensitic transformation during cold deformation. A numerical assessment of the influence of alloying austenite-forming elements Ni, Mn, Cu on the critical degree of cold plastic deformation, leading to the formation of deformation martensite in steel, is proposed. The temperature range of the reverse transformation of this martensite into austenite during annealing is established, depending on the nickel content in the steel. For precipitation hardened steel with a composition of 10%Mn; 10%Ni; 2%Cu; 0.3–0.4%C; ~1.4%V the regularities of dissolution upon heating for quenching and precipitation during aging of particles of the strengthening carbide phase VC were studied. It has been shown that the maximum strength is achieved after quenching from 1150°C and aging at 650°C for 15 hours. Taking into account the studies carried out on the stability of austenite, static and cyclic strength and durability, the optimal alloying range of steel with nickel, manganese and copper was substantiated, and the optimal mode of heat treatment was revealed, which provides a combination of high strength with good ductility and toughness of steel.

About the Authors

M. V. Kostina
Baikov Institute of Metallurgy and Materials Science
Russian Federation

Dr Sc.

49 Leninsky Ave, 119334 Moscow



V. M. Blinov
Baikov Institute of Metallurgy and Materials Science
Russian Federation

Dr Sc.

49 Leninsky Ave, 119334 Moscow



G. Yu. Kalinin
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

Dr Sc.

49 Shpalernaya St, 191015 St Petersburg



O. V. Fomina
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

Dr Sc.

49 Shpalernaya St, 191015 St Petersburg



S. Yu. Mushnikova
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

Dr Sc.

49 Shpalernaya St, 191015 St Petersburg



References

1. Patent RU 2052532: Bannykh , O . A . , Sokolov , O . G . , Lyakishev , N . P ., Blinov , V . M . , Kostina , M . V . , etal ., Stainless steel. Publ. 20.01.1996.

2. Bannykh, O . A., Blinov , V . M ., Dispersionno-tverdeyushchie nemagnitnye vanadysoderzhashchie stali [Dispersion-hardening non-magnetic vanadium-containing steels], Moscow: Nauka, 1980.

3. . Kostina, M . V ., Razrabotka vysokoprochnykh nemagnitnykh Mn–Ni–Cu–V– (Mo) –C staley, korrozionno-sovmestimykh s nizkolegirovannymi i uglerodistymi stalyami [Development of high-strength non-magnetic Mn–Ni–Cu–V–(Mo)–C steels, corrosion-compatible with low alloy and carbon steels]: Abstract of dissertation for the degree of candidate of technical sciences, Moscow: IMET RAS, 1993.

4. Bannykh, O . A., Blinov, V .M . , Kostina, M . V ., Vliyanie nikelya, margantsa i medi na stabilnost beskhromistogo austenita pri kholodnoy plasticheskoy deformatsii [The effect of nickel, manganese and copper on the stability of chromium-free austenite during cold plastic deformation], Metally, 1995, No 2.

5. Bannykh, O. A., Blinov, V. M., Kostina, M. V., O vliyanii medi i nikelya na prochnost i vyazkost stareyushchikh staley [On the influence of copper and nickel on the strength and toughness of aging steels], Metally, 1993, No 1.

6. Nemirovsky, Yu . R . , Kibalnik , V . D . , Khadyev, M . S . , Nemirovsky, M . R. , Bannykh, O. A . , Blinov , V . M . , Kostina, M . V . , Issledovanie protsessov stareniya v stali 40G10N10F, legirovannoy medyu [Investigation of aging processes in steel 40G10N10F alloyed with copper], FMM, 1995, V. 79, No 5.

7. Smallma n , R . E . , Ngan, A .H . W., Chapter 13: Precipitation Hardening, Modern Physical Metallurgy (Eighth Edition), 2014, pp. 499–527

8. Sourmail , T ., Precipitation in Creep Resistant Austenitic Stainless Steels, Materials Science and Technology, 2001, January, V. 17(1), pp. 1–14. DOI: 10.1179/026708301101508972

9. Raman , L . , Gothandapani , K . , Murty, B . S ., Austenitic oxide dispersion strengthened steels: A review, Defence Science Journal, 2016, V. 66, No 4, pp. 316–322.

10. Kumar , S . S . , Sandeep, E . S . , Chandrasekhar, S . B . , Karak , S . K ., Development of nano-oxide dispersed 304L steels by mechanical milling and conventional sintering, Mater. Res., 2016, No 19 (1).

11. Oakley , A . , Ratishvili, M . , Margiev, B . , et a l ., Dispersion strengthening of austenitic manganese alloy by using the aluminum oxide nanopowder and vanadium, Materials science (S36), Georgian Engineering News (GEN), 2008, No 1, pp. 52–55.

12. Solenthaler , C h ., Ramesh, M . , Uggowitzer, P . J ., Spolenak , R ., Precipitation strengthening of Nb-stabilized TP347 austenitic steel by a dispersion of secondary Nb (C, N) formed upon a short-term hardening heat treatment, Materials Science and Engineering A, 2015, No 647, pp. 294–302.

13. Kaputkina, L . M . , Svyazhin, A . G ., Bronz, A . V . , Smarygina, I . V . , Bazhenov, V . E . , Kindop , V . E ., Hardening of austenitic steels with high Mn and Al content, Materials science. Non-equilibrium phase transformations, 2015, No 1, pp. 22–24.

14. Scott, C . P . , Jean - Lou is Collet , B . R. , e t al ., Precipitation strengthening in high manganese austenitic TWIP steels, International Journal of Materials Research, 2011, No 102 (5), pp. 538–549.

15. Iker, M . , Gaude - Fugarolas , D . , Jacques , P. J . , Delannay , F ., Improvement of the Mechanical Properties of High Manganese Steels by Combination of Precipitation Hardening and Mechanical Twinning, Advanced Materials Research, 2007, December, Vols. 15–17, pp. 852–857.

16. Farooq , M ., Strengthening and degradation mechanisms in austenitic stainless steels at elevated temperature: Doctoral Thesis, Stockholm, 2013.

17. Kositsyna, I . I ., Zakonomernosti formirovaniya struktury i svoystv vysokoprochnykh austenitnykh staley s karbidnym uprochneniem [Regularities of the formation of the structure and properties of highstrength austenitic steels with carbide hardening]: Abstract of dissertation for the degree of doctor of technical sciences, Ekaterinburg, 2004.

18. Sagaradze, V .V . , Uvarov, A. I ., Uprochnenie i svoystva austenitnykh staley [Hardening and properties of austenitic steels], Ekaterinburg: Ural branch RAS, 2013.

19. Pridantsev, M. V . , Talov, N .P . , Levin , F . L ., Vysokoprochnye austenitnye stali [High strength austenitic steels], Moscow: Metallurgiya, 1969.


Review

For citations:


Kostina M.V., Blinov V.M., Kalinin G.Yu., Fomina O.V., Mushnikova S.Yu. Structure and mechanical properties of high strength austenitic Mn–Ni–Cu–V–C dispersionally hardened steel. Voprosy Materialovedeniya. 2021;(4(108)):7-22. (In Russ.) https://doi.org/10.22349/1994-6716-2021-108-4-07-22

Views: 322


ISSN 1994-6716 (Print)