Preview

Voprosy Materialovedeniya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Formation of austenite in ferrite-beinite, beinite-martensite and martensitic shipbuilding steels and its influence on the transformed structure

https://doi.org/10.22349/1994-6716-2021-108-4-37-48

Abstract

This article investigates the kinetics of austenite grain growth during heating and the features of phase transformations depending on the austenite grain size in ferrite-bainitic, bainite-martensitic and martensitic shipbuilding steels. The kinetics of dynamic and static recrystallization is studied depending on the holding time at a given temperature. The studies carried out made it possible to determine the effect of the austenite grain size in shipbuilding steels of manganese, manganese-nickel and nickel alloying composition on the transformed structure.

About the Authors

S. V. Korotovskaya
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

Cand Sc. (Eng)

49 Shpalernaya St, 191015 St Petersburg



O. V. Sych
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

Cand Sc. (Eng)

49 Shpalernaya St, 191015 St Petersburg



E. I. Khlusova
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

Dr Sc. (Eng)

49 Shpalernaya St, 191015 St Petersburg



D. M. Anisimov
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

49 Shpalernaya St, 191015 St Petersburg



References

1. Oryshchenko , A . S ., Fundamentalnye podkhody v sozdanii vysokoprochnykh konstruktsionnykh khorosho svarivaemykh staley s elementami nanostrukturirovaniya [Fundamental approaches to the creation of high-strength structural well-weldable steels with nanostructuring elements], Izvestiya vysshikh uchebnykh zavedeniy. Chernaya metallurgiya, 2017, V. 60, No 11, pp. 919–924

2. Sych, O. V., Nauchno-tekhnologicheskie osnovy sozdaniya khladostoykikh staley s garantirovannym predelom tekuchesti 315–750 MPa dlya Arktiki. Chast 2. Tekhnologiya proizvodstva, struktura i kharakteristiki rabotosposobnosti listovogo prokata [Scientific and technological foundations for the creation of cold-resistant steels with a guaranteed yield point of 315–750 MPa for the Arctic. Part 2. Production technology, structure and performance characteristics of sheet metal], Voprosy Materialovedeniya, 2018, No 4 (956), pp. 14–42.

3. Golosienko, S.A., Minyakin, N.A., Ryabov, V.V., Semicheva, T.G., Khlusov a , E . I ., Vliyanie mikrolegirovaniya na mekhanicheskie svoystva nizkolegirovannoy khromonikelmolibdenovoy stali [Effect of microalloying on the mechanical properties of low-alloyed chromium-nickelmolybdenum steel], Voprosy Materialovedeniya, 2019, No 1 (97), pp. 7–13.

4. Matrosov, M .Y u . , Efron , L .I . , Kichkina, A . A . , Lyasotsky, I . V ., Issledovanie mikrostruktury mikrolegirovannoy niobiem trubnoy stali posle razlichnykh rezhimov kontroliruyemoy prokatki s uskorennym okhlazhdeniem [Study of the microstructure of pipe steel microalloyed with niobium after different modes of controlled rolling with accelerated cooling], MiTOM, 2008, No 3, pp. 44–49.

5. Orlov, V.V., Malyshevsky, V.A., Khlusova , E . I . , Golosienko, S . A ., Razrabotka tekhnologiy proizvodstva konstruktsionnykh staley dlya morskoy tekhniki i magistralnykh truboprovodov, prednaznachennykh dlya ekspluatatsii v Arktike [Development of technologies for the production of structural steels for marine equipment and trunk pipelines intended for operation in the Arctic], Stal, 2014, No 9, pp. 79– 88.

6. Plekhanov , T. P. , Dorozhko , T. K. , Klestov , V . M ., Zakalka nizkouglerodistykh nizkolegirovannykh staley s prokatnogo nagreva. Termicheskaya i termomekhanicheskaya obrabotka prokata [Hardening of low-carbon low-alloy steels from rolling heating – Thermal and thermomechanical treatment of rolled products], Moscow: Metallurgiya, 1981, pp. 17–20.

7. Korotovskaya, S. V., Sych, O. V., Khlusova, E. I. , Novoskoltsev , N .S ., Vliyanie mikrolegirovaniya na osobennosti strukturoobrazuyushchikh protsessov pri goryachey plasticheskoy deformatsii [Influence of microalloying on the features of structure-forming processes during hot plastic deformation], Voprosy Materialovedeniya, 2020, No 4 (104), pp. 5–16.

8. Sych, O. V. , Korotovskaya , S. V. , Khlusova , E. I. , Novoskoltsev , N .S ., Razrabotka termo-deformatsionnykh rezhimov prokatki nizkolegirovannoy “Arc” stali s kvaziodnorodnoy ferritnobeynitnoy strukturoy [Development of thermal deformation modes for rolling low-alloy “Arc” steel with a quasi-uniform ferrite-bainite structure], Voprosy Materialovedeniya, 2021, No 2 (106), pp. 5–17.

9. Bernshteyn , M . L ., Termomekhanicheskaya obrabotka stali [Thermomechanical treatment of steel], Moscow: Metallurgiya, 1983, V. 2.

10. Dhua , S . K . , Mukerjee , D . , Sarma , D . S ., Influence of Thermomechanical Treatments on the Microstructure and Mechanical Properties of HSLA-100 Steel Plates, Met. and Mat. Trans. A, 2003, V. 34A, pp. 241–253.

11. Gulyaev , A . P ., Metallovedenie [Metallurgy]: a textbook for universities, Moscow: Metallurgiya, 1986.

12. García de Andrés, C., Bartolomé, M.J., Capdevila, C., San Martín, D., Cab a l le ro , F . G . , L ó p ez , V ., Metallographic techniques for the determination of the austenite grain size in medium-carbon microalloyed steels, Materials Characterization, 2001, No 46 (5), pp. 389–398. DOI: 10.1016/S1044-5803(01)00142-5

13. Soshina T . V . , Zisman A . A . , Khlusova E . I. Vyavlenie byvshikh zeren austenita metodom termicheskogo travleniya v vakuume pri imitatsii TMO nizkouglerodistykh staley [Identification of former austenite grains by thermal etching in vacuum while imitating TMT of low-carbon steels], Metallurg, 2013, No 2, pp. 63–70.


Review

For citations:


Korotovskaya S.V., Sych O.V., Khlusova E.I., Anisimov D.M. Formation of austenite in ferrite-beinite, beinite-martensite and martensitic shipbuilding steels and its influence on the transformed structure. Voprosy Materialovedeniya. 2021;(4(108)):37-48. (In Russ.) https://doi.org/10.22349/1994-6716-2021-108-4-37-48

Views: 194


ISSN 1994-6716 (Print)