

Formation of austenite in ferrite-beinite, beinite-martensite and martensitic shipbuilding steels and its influence on the transformed structure
https://doi.org/10.22349/1994-6716-2021-108-4-37-48
Abstract
This article investigates the kinetics of austenite grain growth during heating and the features of phase transformations depending on the austenite grain size in ferrite-bainitic, bainite-martensitic and martensitic shipbuilding steels. The kinetics of dynamic and static recrystallization is studied depending on the holding time at a given temperature. The studies carried out made it possible to determine the effect of the austenite grain size in shipbuilding steels of manganese, manganese-nickel and nickel alloying composition on the transformed structure.
Keywords
About the Authors
S. V. KorotovskayaRussian Federation
Cand Sc. (Eng)
49 Shpalernaya St, 191015 St Petersburg
O. V. Sych
Russian Federation
Cand Sc. (Eng)
49 Shpalernaya St, 191015 St Petersburg
E. I. Khlusova
Russian Federation
Dr Sc. (Eng)
49 Shpalernaya St, 191015 St Petersburg
D. M. Anisimov
Russian Federation
49 Shpalernaya St, 191015 St Petersburg
References
1. Oryshchenko , A . S ., Fundamentalnye podkhody v sozdanii vysokoprochnykh konstruktsionnykh khorosho svarivaemykh staley s elementami nanostrukturirovaniya [Fundamental approaches to the creation of high-strength structural well-weldable steels with nanostructuring elements], Izvestiya vysshikh uchebnykh zavedeniy. Chernaya metallurgiya, 2017, V. 60, No 11, pp. 919–924
2. Sych, O. V., Nauchno-tekhnologicheskie osnovy sozdaniya khladostoykikh staley s garantirovannym predelom tekuchesti 315–750 MPa dlya Arktiki. Chast 2. Tekhnologiya proizvodstva, struktura i kharakteristiki rabotosposobnosti listovogo prokata [Scientific and technological foundations for the creation of cold-resistant steels with a guaranteed yield point of 315–750 MPa for the Arctic. Part 2. Production technology, structure and performance characteristics of sheet metal], Voprosy Materialovedeniya, 2018, No 4 (956), pp. 14–42.
3. Golosienko, S.A., Minyakin, N.A., Ryabov, V.V., Semicheva, T.G., Khlusov a , E . I ., Vliyanie mikrolegirovaniya na mekhanicheskie svoystva nizkolegirovannoy khromonikelmolibdenovoy stali [Effect of microalloying on the mechanical properties of low-alloyed chromium-nickelmolybdenum steel], Voprosy Materialovedeniya, 2019, No 1 (97), pp. 7–13.
4. Matrosov, M .Y u . , Efron , L .I . , Kichkina, A . A . , Lyasotsky, I . V ., Issledovanie mikrostruktury mikrolegirovannoy niobiem trubnoy stali posle razlichnykh rezhimov kontroliruyemoy prokatki s uskorennym okhlazhdeniem [Study of the microstructure of pipe steel microalloyed with niobium after different modes of controlled rolling with accelerated cooling], MiTOM, 2008, No 3, pp. 44–49.
5. Orlov, V.V., Malyshevsky, V.A., Khlusova , E . I . , Golosienko, S . A ., Razrabotka tekhnologiy proizvodstva konstruktsionnykh staley dlya morskoy tekhniki i magistralnykh truboprovodov, prednaznachennykh dlya ekspluatatsii v Arktike [Development of technologies for the production of structural steels for marine equipment and trunk pipelines intended for operation in the Arctic], Stal, 2014, No 9, pp. 79– 88.
6. Plekhanov , T. P. , Dorozhko , T. K. , Klestov , V . M ., Zakalka nizkouglerodistykh nizkolegirovannykh staley s prokatnogo nagreva. Termicheskaya i termomekhanicheskaya obrabotka prokata [Hardening of low-carbon low-alloy steels from rolling heating – Thermal and thermomechanical treatment of rolled products], Moscow: Metallurgiya, 1981, pp. 17–20.
7. Korotovskaya, S. V., Sych, O. V., Khlusova, E. I. , Novoskoltsev , N .S ., Vliyanie mikrolegirovaniya na osobennosti strukturoobrazuyushchikh protsessov pri goryachey plasticheskoy deformatsii [Influence of microalloying on the features of structure-forming processes during hot plastic deformation], Voprosy Materialovedeniya, 2020, No 4 (104), pp. 5–16.
8. Sych, O. V. , Korotovskaya , S. V. , Khlusova , E. I. , Novoskoltsev , N .S ., Razrabotka termo-deformatsionnykh rezhimov prokatki nizkolegirovannoy “Arc” stali s kvaziodnorodnoy ferritnobeynitnoy strukturoy [Development of thermal deformation modes for rolling low-alloy “Arc” steel with a quasi-uniform ferrite-bainite structure], Voprosy Materialovedeniya, 2021, No 2 (106), pp. 5–17.
9. Bernshteyn , M . L ., Termomekhanicheskaya obrabotka stali [Thermomechanical treatment of steel], Moscow: Metallurgiya, 1983, V. 2.
10. Dhua , S . K . , Mukerjee , D . , Sarma , D . S ., Influence of Thermomechanical Treatments on the Microstructure and Mechanical Properties of HSLA-100 Steel Plates, Met. and Mat. Trans. A, 2003, V. 34A, pp. 241–253.
11. Gulyaev , A . P ., Metallovedenie [Metallurgy]: a textbook for universities, Moscow: Metallurgiya, 1986.
12. García de Andrés, C., Bartolomé, M.J., Capdevila, C., San Martín, D., Cab a l le ro , F . G . , L ó p ez , V ., Metallographic techniques for the determination of the austenite grain size in medium-carbon microalloyed steels, Materials Characterization, 2001, No 46 (5), pp. 389–398. DOI: 10.1016/S1044-5803(01)00142-5
13. Soshina T . V . , Zisman A . A . , Khlusova E . I. Vyavlenie byvshikh zeren austenita metodom termicheskogo travleniya v vakuume pri imitatsii TMO nizkouglerodistykh staley [Identification of former austenite grains by thermal etching in vacuum while imitating TMT of low-carbon steels], Metallurg, 2013, No 2, pp. 63–70.
Review
For citations:
Korotovskaya S.V., Sych O.V., Khlusova E.I., Anisimov D.M. Formation of austenite in ferrite-beinite, beinite-martensite and martensitic shipbuilding steels and its influence on the transformed structure. Voprosy Materialovedeniya. 2021;(4(108)):37-48. (In Russ.) https://doi.org/10.22349/1994-6716-2021-108-4-37-48