Preview

Voprosy Materialovedeniya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Synthesis and electron beam facing oftitanium monoboride – titanium matrix composite powders

https://doi.org/10.22349/1994-6716-2018-93-1-88-102

Abstract

Titanium monoboride – titanium matrix composite powders have been synthesized by self-propagating high temperature synthesis (SHS) in titanium and boron reactive powder mixtures. Titanium matrix (binder) content varied from 20 to 60%. The SHS powders were cladded on VT1-0 titanium sheet by electron beam facing. Cladded coatings’ thickness varied from 1 to 3 mm depending on the pass number. Phase composition and structure of powders and coatings were investigated by X-ray diffraction, optical and scanning electron microscopy. According to structure investigation and hardness profiles view in the “coating – titanium base plate” transition zone an adhesion of the coating to the base is high. The hardness and abrasive wear resistance tests of the cladded coatings were carried out depending on the powder used for cladding. The maximum hardness of the coatings strengthened by eagle-like titanium monoboride inclusions as compared with VТ1-0 base increases 2.2 times and abrasive wear resistance 3.7 times. According to previously obtained results hardening and abrasive wear resistance of titanium monoboride is much weaker than that of titanium carbide: hardness increases 1.7 times, wear resistance 5.8 times.

About the Authors

G. A. Pribytkov
Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences (ISPMS SB RAS)
Russian Federation

Dr Sc. (Eng)

2/4 Akademichesky Ave., 634055 Tomsk



V. V. Korzhova
Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences (ISPMS SB RAS)
Russian Federation

Cand Sc. (Eng)

2/4 Akademichesky Ave., 634055 Tomsk



M. G. Krinitsyn
Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences (ISPMS SB RAS)
Russian Federation
2/4 Akademichesky Ave., 634055 Tomsk


I. A. Firsina
Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences (ISPMS SB RAS)
Russian Federation

Cand Sc. (Eng)

2/4 Akademichesky Ave., 634055 Tomsk



References

1. Qi, J.Q., Wang, H.W., Zou, C.M., Wei, W.Q., Wei, Z.J., Temperature dependence of fracture behavior of in situ synthesized TiC/Ti-alloy matrix composite, Materials Science and Engineering: A, 2011, V. 528, Issues 25–26, pp. 7669–7673.

2. Rasool, G., Mridha, S., Stack, M.M., Mapping wear mechanisms of TiC/Ti composite coatings, Wear, 2015, V. 328–329, pp. 498–508.

3. Tjong, S.C., Ma, Z.Y., Microstructural and mechanical characteristics of in situ metal matrix composites, Materials Science and Engineering: R: Reports, 2000, V. 29, Issues 3–4, pp. 49–113.

4. Zhang, J., Ke, W., Ji, W., Fan, Z., Wang, W., Fu, Z., Microstructure and properties of in situ titanium boride (TiB) /titanium (Ti) composites, Materials Science and Engineering: A, 2015, V. 648, pp. 158–163.

5. Attar, H., Löber, L., Funk, A., Calin, M., Zhang, L.C., Prashanth, K.G., Scudino, S., Zhang, Y.S., Eckert, J., Mechanical behavior of porous commercially pure Ti and Ti– TiB composite materials manufactured by selective laser melting, Materials Science & Engineering: A, 2015, V. 625, pp. 350–356

6. Sahay, S.S., Ravichandran, K.S., Atri, R., Evolution of microstructure and phases in in situ processed Ti–TiB composites containing high volume fractions of TiB whiskers, Journal of Materials Research, 1999, V. 14, No 11, pp. 4214–4223.

7. Ma, F., Wang, T., Liu, P., Li, W., Liu, X., Chen, X., Pan, D., Lu, W., Mechanical properties and strengthening effects of in situ(TiB+TiC)/Ti-1100 composite at elevated temperatures, Materials Science & Engineering: A, 2016, V. 654, pp. 352–358

8. Li, S., Kondoh, K., Imai, H., Chen, B., Jia, L., Umeda, J., Fu, Y., Strengthening behavior of in situ-synthesized (TiC–TiB)/Ti composites by powder metallurgy and hot extrusion, Materials and Design, 2016, V. 95, pp. 127–132.

9. Imayev, V., Gaisin, R., Gaisina, E., Imayev, R., Fecht, H.-J., Pyczak, F., Effect of hot forging on microstructure and tensile properties of Ti–TiB based composites produced by casting, Materials Science and Engineering: A, 2014, V. 609, pp. 34–41.

10. Imayev, V.M., Gaisin, R.A., Imayev, R.M., Effect of boron additions and processing on microstructure and mechanical properties of a titanium alloy Ti–6.5Al–3.3Mo–0.3Si, Materials Science and Engineering: A, 2015, V. 641, pp. 71–83.

11. Shen, X., Zhang, Z., Wei, S., Wang, F., Lee, S., Microstructures and mechanical properties of the in situ TiB–Ti metal–matrix composites synthesized by spark plasma sintering process, Journal of Alloys and Compounds, 2011, V. 509, Issue 29, pp. 7692–7696.

12. Cheloui, H., Zhang, Z., Shen, X., Wang, F., Lee, S., Microstructure and mechanical properties of TiB–TiB2ceramic matrix composites fabricated by spark plasma sintering, Materials Science and Engineering: A, 2011, V. 528, pp. 3849–3853.

13. Wang, F., Zhang, Z., Luo, J., Huang, Ch ., Lee, S ., A novel rapid route for in situ synthesizing TiB–TiB2composites, Composites Science and Technology, 2009, V. 69, pp. 2682–2687.

14. Wei, S., Zhang, Z., Wang, F., Shen, X., Cai, H., Lee, S., Wang, L., Effect of Ti content and sintering temperature on the microstructures and mechanicalproperties of TiB reinforced titanium composites synthesized by SPS process, Materials Science and Engineering: A, 2013, V. 560, pp. 249– 255.

15. Chaudhari, R., Bauri, R., Reaction mechanism, microstructure and properties of Ti–TiB in situ composite processed by spark plasma sintering, Materials Science and Engineering: A, 2013, V. 587, pp. 161–167.

16. Eriksson, M. Salamon, D., Nygren, D. M., Shen, Z., Spark plasma sintering and deformation of Ti–TiB2composites, Materials Science and Engineering: A, 2008, V. 475, pp. 101–104.

17. Jia, L. Wang, X., Chen, B., Imai, H., Li, S., Lu, Z., Kondoh, K., Microstructural evolution and competitive reaction behavior ofTi-B4C system under solid-state sintering, Journal of Alloys and Compounds, 2016, V. 687, pp. 1004–1011.

18. Diagrammy sostoyaniya dvoynykh metallicheskikh system[Diagrams of the state of double metal systems]: Reference book, N.P. Liakishev (Ed.), Moscow: Mashinostroenie, 1996, V. 1.

19. Miklaszewski, A . , Effect of starting material character and its sintering temperature on microstructure and mechanical properties of super hard Ti/TiB metal matrix composites, International Journal of Refractory Metals and Hard Materials, 2015, V. 53, Part A, pp. 56–60.

20. Yan, Z . Chen, F ., Cai, Y ., Zheng, Y ., Microstructure and mechanical properties of insitu synthesized TiB whiskers reinforced titanium matrix composites by high-velocity compaction, Powder Technology, 2014, V. 267, pp. 309–314.

21. Quast, J.P., Boehlert, C.J., Gardner, R., Tuegel, E., Wyen, T., A microstructure and sonic fatigue investigation of Ti–TiB functionally graded materials, Materials Science and Engineering: A, 2008, V. 497, pp. 1–9.

22. Fu, B. , Wang, H . , Zou, Ch . , Wei, Z ., Microstructural characterization of in situ synthesized TiB in cast Ti-1100-0.10B alloy, Trans. Nonferrous Met. Soc. China, 2015, V. 25, pp. 2206–2213.

23. Akopyan, A.G., Dolukhanyan, S.K., Borovinskaya, I.P., Vzaimodeistvie titana, bora i ugleroda [The interaction of titanium, boron and carbon], Fizika goreniya i vzryva, 1978, No 3, pp.70–79.

24. Azatyan, T.S., Maltsev, V.M., Merzhanov, A.G., Seleznev, V.A., O mekhanizme rasprostraneniya volny goreniya v smesyakh titana s borom [On the Mechanism of Propagation of the Combustion Wave in Mixtures of Titanium with Boron], Fizika goreniya i vzryva, 1980, V. 16, No 2, pp. 37–42.

25. Zwikker, U ., Titan und Titanlegirungen, Springer-Verlag, 1974.

26. Gorynin, I.V., Chechulin, B.B., Titan v mashinostroenii[Titanium in engineering], Moscow: Mashinostroenie, 1990.

27. Lin, Y., Lei, Y., Li, X., Zhi, X., Fu, H., A study of TiB2/TiB gradient coating by laser cladding on titanium alloy, Optics and Lasers in Engineering, 2016, V. 82, pp. 48–55.

28. Genç, A., Banerjee, R., Hill, D., Fraser, H.L., Structure of TiB precipitates in laser deposited in situ, Ti-6Al-4V–TiB composites, Materials Letters, 2006, V. 60, pp. 859–863.

29. Attar, H., Ehtemam-Haghighi, S., Kent, D., Okulov, I.V., Wendrock, H., Bönisch, M., Volegov, A.S., Calin, M., Eckert, J., Dargusch, M.S., Nanoindentation and wear properties of Ti and Ti-TiB composite materials produced by selective laser melting, Materials Science and Engineering: A, 2017, V. 688, pp. 20–26.

30. Attar, H., Bönisch, M., Calin, M., Zhang, L., Scudino, S., Eckert, J., Selective laser melting of in sutu titanium-titanium boride composites: Processing, microstructure, and mechanical properties, Acta materialia, 2014, V. 76, pp. 13–22.

31. Attar, H., Prashanth, K.G., Zhang, L., Calin, M., Okulov, I.V., Scudino, S., Yang, Ch., Eckert, J., Effect of Powder Particle Shape on the Properties of In Situ Ti–TiB Composite Materials Produced by Selective Laser Melting, Journal of Materials Science and Technology, 2015, V. 31, pp. 1001–1005.

32. Hu, Y ., Cong, W., Wang, X ., Li, Y ., Ning, F ., Wang H ., Laser deposition-additive manufacturing of TiB-Ti composites with novel three-dimensional quasi-continuous network microstructure: Effects on strengthening and toughening, Composites. Part B, 2018, V. 133, pp. 91–100.

33. Panin, V.E., Belyuk, S.I., Durakov, V.G., Pribytkov, G.A., Rempe, N.G., Elektronno-luchevaya naplavka v vakuume: oborudovaniye, tekhnologiya, svoistva pokryty [Electron beam surfacing in vacuum: equipment, technology, coating properties], Svarochnoe proizvodstvo, 2000, No 2, pp. 34–38.

34. Rogachev, A.S., Mukasyan, A.S., Gorenie dlya sinteza materialov: vvedenie v strukturnuyu makrokinetiku [Combustion for the synthesis of materials: introduction to structural macrokinetics], Moscow: Fizmatlit, 2012.

35. Pribytkov, G .A ., Krinitsyn, M.G ., Korzhova, V.V., Issledovanie produktov SVsinteza v poroshkovykh smesyakh titana i ugleroda, soderzhashchikh izbytok titana [Investigation of products of SV synthesis in powder mixtures of titaniumand carbon containing an excess of titanium], Perspektivnye materialy, 2016, No 5, pp. 59–68.

36. Pribytkov, G.A., Korzhova, V.V., Baranovsky, A.V., Krinitsyn, M.G., Fazovy sostav i struktura SVS-kompozitsionnykh poroshkov “karbid titana – svyazka iz stali R6M5” [Phase composition and structure of SHS composite powders: titanium carbide as a binding for steel R6M5], Izvestiya vuzov. Poroshkovaya metallurgiya i funktsionalnye pokrytiya, 2016, No 2, pp. 64–71.

37. Pribytkov, G.A., Krinitsyn, M.G., Firsina, I.A., Durakov, V.G., Tverdost i abrazivnaya iznosostoykost elektronnoluchevykh pokrytiy karbid titana – titanovaya svyazka, naplavlennykh SVS kompozitsionnymi poroshkami [Hardness and abrasive wear resistance of electron-beam coatings of titanium carbide as a titanium binder, built-up by SAF composite powders], Voprosy Materialovedeniya, 2017, No 4 (92), pp. 52–61.

38. Svoystva, poluchenie i primenenietugoplavkikh soedineniy [Properties, production and application of refractory compounds]: Handbook, Kosolapova T.Ya. (Ed.), Moscow: Metallurgiya, 1986.


Review

For citations:


Pribytkov G.A., Korzhova V.V., Krinitsyn M.G., Firsina I.A. Synthesis and electron beam facing oftitanium monoboride – titanium matrix composite powders. Voprosy Materialovedeniya. 2018;(1(93)):88-102. (In Russ.) https://doi.org/10.22349/1994-6716-2018-93-1-88-102

Views: 365


ISSN 1994-6716 (Print)