Preview

Voprosy Materialovedeniya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Prediction of hydrostatic strength of spheroplastics

https://doi.org/10.22349/1994-6716-2021-108-4-149-164

Abstract

In this work, calculations of the hydrostatic strength of a spheroplastic are carried out using the previously described empirical formula. The calculations were based on the physical and mechanical characteristics of the polymer binder and hollow glass microspheres. Measurements of the physical and mechanical characteristics of the polymer binder, hollow glass microspheres and spheroplastics were performed with standard methods: dynamic mechanical analysis (DMA), gas and hydrostatic pycnometers. The results of tensometric tests of Poisson’s ratios of binders were also used. The hydrostatic strength measurements were carried out in a high pressure hydrochamber. Comparison of the calculations and experimental data for a number of spheroplastic compositions based on multicomponent epoxy binders is carried out. The degree of influence of the properties of microspheres and binders on the hydrostatic strength of a spheroplastic is shown. The correlation of the calculated values with experimental knowledge is assessed.

About the Authors

V. L. Lebedev
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

Cand Sc. (Eng)

49 Shpalernaya St, 191015 St Petersburg



V. Yu. Kosulnikov
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

49 Shpalernaya St, 191015 St Petersburg



P. V. Sery
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

Cand Sc. (Eng)

49 Shpalernaya St, 191015 St Petersburg



S. N. Troshkin
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

49 Shpalernaya St, 191015 St Petersburg



A. V. Аnisimov
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

Dr Sc. (Eng) 

49 Shpalernaya St, 191015 St Petersburg



References

1. Krehnzke, M .A . , Kiernan , T . I., Advanced syntactic foams for deep submergence. The decade ahead – 1970–1980, Marin Technology, 1969, Soc. MTS Conf., pp. 531–556.

2. Krzhechkovsky , P . G ., Mikromekhanika deformirovaniya i razrusheniya sferoplastikov [Micromechanics of deformation and fracture of spheroplastics]: Abstract of dissertation for the degree of doctor of technical sciences, 1992.

3. Dadt , P ., Opredelenie velichiny kratkovremennogo kriticheskogo razrushayushchego gidrostaticheskogo davleniya dlya sintaktnoy peny [Determination of the value of the short-term critical breaking hydrostatic pressure for syntactic foam], Leningrad: TsNII TS, 1980.

4. Krzhechkovsky, P . G . , Pavlishchev , V . I ., Privedennye uprugie kharakteristiki dlya polykh sfericheskikh napolniteley [Reduced elastic characteristics for hollow spherical fillers], Stroitelnaya mekhanika korablya: Collection of scientific papers, 1984, pp. 56–62.

5. Budov , V . V ., Polye steklyannye mikrosfery. Primenenie, svoystva, tekhnologiya [Hollow glass microspheres. Application, properties, technology], Steklo i keramika, 1994, No 7–8, pp. 7–11.

6. Aslanova , M . S. , Stetsenko , V . Ya . , Shustrov , A . F ., Polye neorganicheskie mikrosfery [Hollow inorganic microspheres], Khimicheskaya promyshlennost za rubezhom, 1981, No 9, pp. 33–51.

7. Budov , V . V ., Fiziko-khimicheskie protsessy v tekhnologii polykh steklyannykh mikrosfer [Physicochemical processes in the technology of hollow glass microspheres], Steklo i keramika, 1990, No 3, pp. 9– 10.

8. Budov , V . V ., Prochnost polykh steklyannykh mikrosfer raznogo tipa [The strength of various types of hollow glass microspheres], Problemy prochnosti, 1991, No 5, pp. 68–70.

9. Budov , V . V ., Vliyanie nekotorykh faktorov na prochnost polykh steklyannykh mikrosfer [Influence of some factors on the strength of hollow glass microspheres], Tugoplavkie volokna i melkodispersnye napolniteli, 1990, pp. 34–36.

10. Guloyan , Y u .A ., Fiziko-khimicheskie osnovy tekhnologii stekla [Physicochemical fundamentals of glass technology], Vladimir: Tranzit-Iks, 2008.

11. Shelbi , J ., Struktura, svoystva i tekhnologiya stekla [Glass structure, properties and technology], Moscow: Mir, 2006.

12. Sarkisov , P . D ., Tekhnologiya stekla [Glass technology]: Reference materials, Moscow: Mendeleev Russian Institute of Chemical Technology, 2012.

13. Timoshenko , S . P ., Kurs teorii uprugosti [Elasticity theory course], Kiev: Naukova dumka, 1972.

14. Sanditov , D . S . , Mantatov , V .V . , Sanditov , V . D ., Koeffitsient Puassona i plastichnost stekol [Poisson’s ratio and plasticity of glasses], Zhurnal teoreticheskoy fiziki, 2009, V. 79, No 4, pp. 150–152.

15. Zaydel , A . N ., Oshibki izmereniy fizicheskikh velichin [Measurement errors of physical quantities], Leningrad: Nauka, 1974.

16. Dedenko , L.G., Kerzhentsev , V.V., Matematicheskaya obrabotka i oformlenie rezultatov eksperimenta [Mathematical processing and presentation of experimental results], Moscow: State University, 1977.

17. Teylor , J ., Vvedenie v teoriyu oshibok [Introduction to error theory], Moscow: Mir, 1985.

18. Zemelman , M . A ., Metrologicheskie osnovy tekhnicheskikh izmereniy [Metrological foundations of technical measurements], Moscow: publ. house of standards, 1991.

19. Skhirtladze , A. G ., Praktikum po normirovaniyu tochnosti [Workshop on accuracy standardization]: A textbook for universities, Moscow: Slavyanskaya shkola, 2003.

20. Voigt , W., Lehrbuch der Kristallphysik, Berlin: Teubner, 1928.

21. Reuss , A ., Berechung der Fliessgrenze von Mischkristallen auf Grund der Plastizitatsbedingung, Z. Angew. Math. Und Mech., 1929, V. 9, No 1, pp. 49–58.

22. Hashin, Z . , Shtrikman , S ., A variational approach to the elastic behavior of multiphase materials, J. Mech. Phys. Solids,1963, V. 11, pp. 127–140.

23. Svetashkov, A. A . , Kupriyanov , N . A . , Manabayev , K . K ., Modifikatsii effektivnykh moduley tipa Hashina–Shtrikmana dlya dvukhkomponentnogo izotropnogo kompozita [Modifications of effective modules of the Hashin–Shtrikman type for a two-component isotropic composite], Fizicheskaya mezomekhanika, 2015, V. 18, No 6, pp. 57–65.

24. Zarubin , V .S . , Kuvyrkin , N .G . , Saveleva , I . Y u ., Sravnitelny analiz otsenok moduley uprugosti kompozitov. Izotropnye sharovye vklyucheniya [Comparative analysis of the estimates of the elastic modulus of composites. Isotropic spherical inclusions], Vestnik BGTU (Bauman State Technical University). Mashinostroenie, 2014, No 5, pp. 53–69.


Review

For citations:


Lebedev V.L., Kosulnikov V.Yu., Sery P.V., Troshkin S.N., Аnisimov A.V. Prediction of hydrostatic strength of spheroplastics. Voprosy Materialovedeniya. 2021;(4(108)):149-164. (In Russ.) https://doi.org/10.22349/1994-6716-2021-108-4-149-164

Views: 357


ISSN 1994-6716 (Print)