Preview

Voprosy Materialovedeniya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

High-temperature low-cycle fatigue of a heat-resistant alloy of the Co–Cr –Ni–W–Ta system obtained by additive manufacturing

https://doi.org/10.22349/1994-6716-2021-108-4-189-201

Abstract

The results of fatigue tests of smooth cylindrical specimens with total deformation control under conditions of a symmetric cycle and elevated temperature are presented. The relationship between the values of the fatigue characteristics of the material with allowance for stresses, plastic deformation and the number of cycles to failure is considered. Comparison of deformation curves plotted from experimental data with deformation curves plotted by evaluative methods is presented.

About the Authors

D. I. Suhov
National Research Center “Kurchatov Institute” – VIAM»
Russian Federation

 Cand Sc. (Eng)

17 Radio St, 105005 Moscow



I. A. Hodinev
National Research Center “Kurchatov Institute” – VIAM»
Russian Federation

17 Radio St, 105005 Moscow



S. A. Monin
National Research Center “Kurchatov Institute” – VIAM»
Russian Federation

17 Radio St, 105005 Moscow



P. V. Ryzhkov
National Research Center “Kurchatov Institute” – VIAM»
Russian Federation

17 Radio St, 105005 Moscow



References

1. Advisory circular NO RTS-AP-33.15-1, Guidelines for determining the design values of the characteristics of the structural strength of metallic materials, Moscow: Aviaizdat, 2013.

2. Evgenov , A.G., Shurtakov , S.V., Prager, S.M., Malinin , R.Yu., K voprosu o razrabotke universalnoy raschetnoy metodiki otsenki degradatsii oborotnykh metallicheskikh poroshkovykh materialov v zavisimosti ot tsiklichnosti ispolzovaniya v protsesse selektivnogo lazernogo splavleniya [On the development of a universal calculation method for assessing the degradation of recycled metal powder materials, depending on the cyclic use in the process of selective laser alloying], Aviatsionnye materialy i tekhnologii, 2020, No 4, pp. 3–11. DOI: 10.18577/2071-9140-2020-0-4-3-11.

3. Lutsenko , A.N., Slavin , A.V., Erasov , V.S., Khvatsky, K.K., Prochnostnye ispytaniya i issledovaniya aviatsionnykh materialov [Strength tests and studies of aviation materials], Aviatsionnye materialy i tekhnologii, 2017, No S, pp. 527–546. DOI: 10.18577/2071-9140-2017-0-S-527-546.

4. Bannantine, J.A., Comer, J.J., Handrock , J.L., Fundamentals of metal fatigue analysis. Englewood Cliffs, New Jersey: Prentice Hall. 1990.

5. Donachie, M.J., Donachie, S.J., Superalloys: A Technical Guide, 2nd edition, ASM International, 2002.

6. Reuchet , J., Remy , L., High Temperature Low Cycle Fatigue of MAR-M 509 Superalloy I: The Influence of Temperature on the Low Cycle Fatigue Behaviour from 20 to 1100 °C, Materials Science and Engineering, 1983, V. 58, pp. 19–32.

7. Kablov , E.N., New Generation Materials and Technologies for Their Digital Processing, Herald of the Russian Academy of Sciences, 2020, V. 90, No 2, pp. 225–228.

8. Kablov , E.N., Podzhivotov , N.Yu., Lutsenko , A.N., O neobkhodimosti sozdaniya edinogo informatsionno-analiticheskogo tsentra aviatsionnykh materialov RF [On the need to create a unified information and analytical center for aviation materials of the Russian Federation], Problemy mashinostroeniya i avtomatizatsii, 2019, No 3, pp. 28–34.

9. Kablov , E.N. Materialy novogo pokoleniya – osnova innovatsiy, tekhnologicheskogo liderstva i natsionalnoy bezopasnosti Rossii [New generation materials are the basis for innovation, technological leadership and national security in Russia], Intellekt i tekhnologii, 2016, No 2 (14), pp. 16–21.

10. Erasov , V.S., Oreshko , E.I., Ispytaniya na ustalost metallicheskikh materialov (obzor). Chast 2. Analiz uravneniya Baskvina-Mensona-Koffina. Metodiki ispytaniy i obrabotki rezultatov [Fatigue testing of metallic materials (review). Part 2. Analysis of the Basquin-Manson-Coffin equation. Test methods and results processing], Aviatsionnye materialy i tekhnologii, 2021, No 1 (62), pp. 80–94. DOI: 10.18577/2713-0193- 2021-0-1-80-94.

11. Erasov , V.S., Nuzhnyi , G.A., Grinevich , A.V., Ob otsenke povrezhdayemosti metallicheskikh materialov metodami mekhanicheskikh ispytaniy [On the assessment of the damageability of metallic materials by mechanical test methods], Deformatsiya i razrushenie materialov, 2015, No 3, pp. 42–47.

12. Gorbovets , M.A., Khodinev, I.A., Ryzhkov , P.V., Oborudovaniye dlya provedeniya ispytaniy na malotsiklovuyu ustalost pri «zhestkom» tsikle nagruzheniya [Equipment for testing low-cycle fatigue at a "hard" loading cycle], Trudy VIAM, 2018, No 9, article 06. URL: http://www.viam-works.ru (Accessed July 21, 2020). DOI :dx.doi.org/ 10.18577/2307-6046-2018-0-9-51-60

13. Lee , Y.-L., Barley, M.E., Kang , H.-T., Metal fatigue analysis handbook: practical problemsolving techniques for computer-aided engineering, Elsevier Inc., 2012, pp. 222–223.

14. Standard Practice for Strain-Controlled Fatigue Testing. ASTM E606 – 04. ASTM International. United States, 2004.

15. Mazalov, I.S., Sukhov, D.I., Nerush , S.V., S ulyanova , E.A., Osobennosti formirovaniya mikrostruktury splavov sistemy Co–Cr–Ni–W–Ta i ikh mekhanicheskie svoystva [Features of the formation of the microstructure of alloys of the Co–Cr–Ni–W–Ta system and their mechanical properties], Kristallografiya, 2019, V. 64, No 4, pp. 544–549.

16. Egorushkin , V.E., Panin, V.E., Panin , A.V., O fizicheskoy prirode plastichnosti [On the physical nature of plasticity], Fizicheskaya mezomekhanika, 2020, No 23 (2), pp. 5–14.

17. Meggiolaro , M.A., Statistical evalution of strain-life fatigue crack initiation predictions, International Journal of Fatigue, 2004, No 26, pp. 452–467.

18. Manson , S.S., Fatigue: a Complex Subject - Some Simple Approximations, Experimental Mechanics – Journal of the Society for Experimental Stress Analysis, 1965, No 5 (7), pp. 193–226.

19. Muralidharan, U., Manson, S.S., Modified Universal Slopes Equation for Estimation of Fatigue сharacteristics, Journal of Engineering Materials and Technology – Transactions of the American Society of Mechanical Engineers, 1988, No 110, pp. 55–58.

20. Kablov , E.N., Innovatsionnye razrabotki «VIAM» po realizatsii «Strategicheskikh napravlenii razvitiya materialov i tekhnologii ikh pererabotki na period do 2030 goda» [Innovate developments of the AllRussian Scientific Research Institute of Aviation Materials within the project «Strategic development of materials and technologies of their recycling until 2030»], Aviatsionnye materialy i tekhnologii, 2015, No 1, pp. 3– 33, DOI: 10.18577/2071-9140-2015-0-1-3-33.


Review

For citations:


Suhov D.I., Hodinev I.A., Monin S.A., Ryzhkov P.V. High-temperature low-cycle fatigue of a heat-resistant alloy of the Co–Cr –Ni–W–Ta system obtained by additive manufacturing. Voprosy Materialovedeniya. 2021;(4(108)):189-201. (In Russ.) https://doi.org/10.22349/1994-6716-2021-108-4-189-201

Views: 285


ISSN 1994-6716 (Print)