

A study of primary damage formation in collision cascades in titanium
https://doi.org/10.22349/1994-6716-2021-108-4-216-232
Abstract
Molecular dynamics (MD) simulations were applied to study radiation damage formation in collision cascades initiated by primary knock-on atoms (PKA) with energy EРКА = 5, 10, 15 and 20 keV in α-Ti at T = 100, 300, 600 and 900 K ambient temperatures. A series of 24 collision cascades was simulated for each (EРКА, Т) pair. The necessary sampling set size was justified by a simple a posteriori procedure. The number of Frenkel pairs and the fraction of vacancies, εv, and self-interstitial atoms (SIAs), εi in point defect clusters were evaluated as functions of (EРКА, Т). It was established that collision cascades in α-Ti are extended along PKA trajectories and tend to split into subcascades. In contrast to other elemental metals with close-packed crystal structure, εv≥ εi in collision cascades in α-Ti. Moreover, both εv and εi demonstrate weak temperature dependence. This is anindirect indication that both vacancy and SIA clusters created in collision cascades in α-Ti are stable in the considered temperature range
About the Author
R. E. VoskoboinikovRussian Federation
Cand Sc. (Phys-Math)
31 Kashirskoe shosse, 115409 Moscow; 1 Akademika Kurchatova Square, 123182 Moscow
References
1. Proceedings of the 13th World Conference on Titanium, Ed. by Venkatesh, V., Pilchak, A.L., et al., Hoboken: Wiley, 2015.
2. Froes F., Qian M., Niinomi M. Titanium for Consumer Applications: Real World Use of Titanium, Amsterdam: Elsevier, 2019.
3. Brunette D. M., Tengval l P., Textor M., Thomsen P. Titanium in medicine: material science, surface science, engineering, biological responses and medical applications, Berlin: SpringerVerlag, 2001.
4. Niinomi , M ., Metals for Biomedical Devices, 2nd ed., Duxford: Woodhead Publishing, 2019.
5. Oshida , Y ., Bioscience and Bioengineering of Titanium Materials, 2nd ed., Amsterdam: Elsevier, 2012.
6. Jin M., Yao S., Wang L., Qiao Y., Volinsky A. Enhanced bond strength and bioactivity of interconnected 3D TiO2 nanoporous layer on titanium implants, Surf. Coat. Technol, 2016, V. 304, pp. 459–467.
7. Tabie V. M., Li C., Saifu W., Li J., X u X .Mechanical properties of near alpha titanium alloys for high-temperature applications – a review, Aircraft Engineering and Aerospace Technology, 2020, V. 92 (4), pp. 521–540.
8. Breeze, P ., Gas-Turbine Power Generation, London: Academic Press, 2016.
9. Whittaker, M ., Titanium in the Gas Turbine Engine, Advances in Gas Turbine Technology – Chapter 14, 2011, pp. 315–336.
10. Muktinutalapati , N . R ., Materials for Gas Turbines – An Overview, Advances in Gas Turbine Technology – Chapter 13, 2011, pp. 293–314.
11. Donachie, M . J ., Titanium: A Technical Guide, 2nd ed., Cleveland, OH: ASM International, 2000.
12. Gogia , A .K ., High Temperature Titanium Alloys, Defence Science Journal, 2005, No 55 (2), pp. 149–173.
13. Ushkov , S . S . , Kozhevnikov , O . A ., Opyt primeneniya i znachenie titanovykh splavov dlya razvitiya atomnoy energetiki Rossii [The application experience and importance of titanium alloys for the development of the nuclear power industry in Russia], Voprosy Materialovedeniya, 2009, No 59 (3), pp. 172–187.
14. Oryshchenko , A .S . , Kudryavtsev , A . S ., Mikhaylov, V . I . , Leonov , V . P ., Titanovye splavy dlya morskoy tekhniki i atomnoy energetiki [Titanium alloys for marine engineering and nuclear power], Voprosy Materialovedeniya, 2011, No 65 (1), pp. 60–74.
15. Gorynin, I .V . , Rybin , V .V . , Ushkov , S. S . , Kozhevnikov , O . A ., Titanovye splavy kak perspektivnye reaktornye materialy [Titanium alloys as prospective reactor materials], Radiatsionnoe materialovedenie i konstruktivnaya prochnost reaktornykh materialov: Jubilee collection dedicated to the 100th anniversary of Academicians Kurchatov and Aleksandrov. St Petersburg: Prometey, 2002, pp. 37–45.
16. Boyer, R . R ., Titanium and Its Alloys: Metallurgy, Heat Treatment and Alloy Characteristics, Encyclopedia of Aerospace Engineering, Hoboken: Wiley, 2010.
17. Bauer S., Schmuki P., Vonder M . K., Park J., Engineering biocompatible implant surfaces. Part I: Materials and surfaces, Prog. Mater. Sci., 2013, No 58, pp. 261–326.
18. Dong , H ., Surface engineering of light alloys. Aluminum, magnesium and titanium alloys, Cambridge, UK: Woodhead Publishing, 2010.
19. Zeidlera H., Boettger -Hiller F., Edelmann J., Schubert A., Surface Finish Machining of Medical Parts Using Plasma Electrolytic Polishing, Procedia CIRP, 2016, No 49, pp. 83–87.
20. Kemény A., Hajdu I., Károly D., Pammer D., Osseointegration specified grit blasting parameters, Materials Today: Proceedings, 2018, No 5 (13), Part 2, pp. 26622–26627.
21. Surface Modification of Materials by Ion Implantations for Industrial and Medical Applications, IAEA-TECDOC-1165, Vienna: International Atomic Energy Agency, 2000.
22. Nastasi, M. , Mayer , J . W., Ion Implantation and Synthesis of Materials, Berlin: SpringerVerlag, 2006.
23. García, J . A. , Rodríguez, R . J ., Ion implantation techniques for non-electronic applications, Vacuum, 2011, No 85, pp. 1125–1129.
24. Rautray T. R., Narayanan R., Kim K.-H., Ion implantation of titanium based biomaterials, Prog Mater. Sci., 2011, No 56, pp. 1137–1177.
25. Renk T. J., Buchheit R. G., Sorensen N. R., Cowell S. D., Thompson M. O., Grabowsk i K. S., Surface treatment and alloying with high-power ion beams to improve properties in Al-, Fe-, and Ti-based metals, Digest of Technical Papers. 11th IEEE International Pulsed Power Conference, New York: IEEE, 1997, V. 1, pp. 192–197.
26. Surface Modification of Materials by Ion Beams (SMMIB-2019): abstracts book of the 21st International Conference, Tomsk: National Research Tomsk Polytechnic University (TPU), 2019. URL: https://smmib.ru/assets/files/SMMIB2019_TOMSK_full.pdf (reference date 16/11/2021).
27. Nastasi , M . , Mayer , J . W . , Hirvonen , J . K., Ion-Solid interactions: Fundamentals and Applications, Cambridge: Cambridge University Press, 1996.
28. Was , G . S ., Fundamentals of Radiation Materials Science. Metals and Alloys, 2nd edition, Amsterdam: Elsevier, 2017.
29. Cai , W . , L i, J . , Uberuaga, B . P . , Yip, S ., Molecular Dynamics, Comprehensive Nuclear Materials, Amsterdam: Elsevier, 2020, V. 1, pp. 573–594.
30. Stoller, R .E . , Zarkadoula, E ., Primary Radiation Damage Formation in Solids, Comprehensive Nuclear Materials, Amsterdam: Elsevier, 2020, V. 1, pp. 620–662.
31. Wooding, S. J . , Bacon, D .J . , Phythian , W. J ., A computer simulation study of displacement cascades in α-titanium, Philos Mag A., 1995, V. 72 (5), pp. 1261–1279.
32. Zope , R .R . , Mishin , Y ., Interatomic potentials for atomistic simulations of the Ti-Al system, Phys. Rev. B., 2003, No 68, pp. 024102–1–14.
33. Daw, M . S . , Baskes , M . I ., Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals, Phys. Rev. B., 1984, No 29, pp. 6443–6453.
34. Gärtner K., Stoc k D., Weber B., Betz G., Hautala M., Hobler G., Hou M., Sarite S., Eckstein W., Jiméne z -Rodríguez J. J., Pérez -Martín A. M. C., Andribet E. P., Konoplev V., Gras -Marti A., Posselt M., Shapiro M. H., Tombrello T. A., Urbassek H. M., Hensel H., Yamamura Y., Takeuchi W., Round robin computer simulation of ion transmission through crystalline layers, Nucl. Instr. Meth. Phys. Res. B., 1995, No 102, pp. 183–197.
35. Biersack , J. P . , Ziegler , J. F ., Refined universal potentials in atomic collisions, Nucl. Instr. Meth., 1982, No 194, pp. 93–100.
36. Ziegler, J .F . , Biersack, J . P . , Littmark, U ., The Stopping and Range of Ions in Matter, Treatise on Heavy-Ion Science. V.6: Astrophysics, Chemistry, and Condensed Matter, New York: Springer, 1985, pp. 93–129.
37. Shirley, C .G . , Chaplin , R. L ., Evaluation of the Threshold Energy for Atomic Displacements in Titanium, Phys Rev B., 1972, No 5, pp. 2027–2029.
38. Sattonnay G., Rullier - Albenque F., Dimitrov O., Determination of displacement threshold energies in pure Ti and in γ-TiAl alloys by electron irradiation, J Nucl Mater, 1999, V. 275 (1), pp. 63–73.
39. Landau L .D . , Lifshitz E . M . , Mechanics, 3rd Ed.: Volume 1 of Course of Theoretical Physics, Oxford, 1976.
40. Fock V.A., Fundamentals of Quantum Mechanics, Moscow: Mir Publishers, 1978
41. Touloukian, Y . S . , etal. Thermal Expansion: Metallic Elements and Alloys, Thermophysical Properties of Matter: The TPRC Data Series. 1975, V. 12, New York: IFI / Plenum, 1975.
42. Russell , A .M . , Cook , B .A ., Coefficient of thermal expansion anisotropy and texture effects in ultra-thin titanium sheet, Scripta Mater., 1997, V. 37 (10), pp. 1461–1467.
43. Ziegler, J . F ., SRIM – The Stopping and Range of Ions in Matter. URL: http://www.srim.org/SRIM/SRIMLEGL.htm (reference date 24.11.2021).
44. Paul , H ., Nuclear stopping power and its impact on the determination of electronic stopping power, AIP Conf. Proc., 2013, V. 1525, pp. 309–313.
45. Allen, M . P. , Tildesley, D . J ., Computer Simulation of Liquids, Oxford: Clarendon Press, 1987.
46. Marqués L. A., Rubio J. E., Jaraíz M., Enríquez L., Barbolla J., An improved molecular dynamics scheme for ion bombardment simulations, Nucl. Instr. Meth. Phys. Res. B., 1995, No 102, pp. 7–11.
47. Voskoboinikov R. E., Osetsky Yu. N., Bacon D. J., Statistics of primary damage creation in high-energy displacement cascades in copper and zirconium, Nucl. Instr. Meth. Phys. Res. B., 2006, No 242, pp. 68–70.
48. Voskoboinikov, R., An MD study of primary damage formation in aluminium, Nucl. Instr. Meth. Phys. Res. B., 2019, No 460, pp. 86–91.
49. Voskoboinikov, R., A contribution of L10 ordered crystal structure to the high radiation tolerance of γ-TiAl intermetallics, Instr. Meth. Phys. Res. B., 2019, No 460, pp. 92–97.
50. Voskoboinikov, R., An insight into radiation resistance of D019 Ti3Al intermetallics, J Nucl. Mater., 2019, No 519, pp. 239–246.
51. V os kob oi nik ov , R ., MD simulations of primary damage formation in L12 Ni3Al intermetallics, J. Nucl. Mater., 2019, No 522, pp. 123–135.
52. Voskoboinikov, R.,MD simulations of collision cascades in the vicinity of a screw dislocation in aluminium, Nucl. Instr. Meth. Phys. Res. B., 2013, No 303, pp. 104–107.
53. Voskoboinikov, R., Interaction of collision cascades with an isolated edge dislocation in aluminium, Nucl. Instr. Meth. Phys. Res. B., 2013, No 303, pp. 125–128.
54. Lindemann , P ., Űber die Berechnung molekularer Eigenfrequenzen, Physikalische Zeitschrift, 1910, No 11, pp. 609–612.
55. Nordlund K., Averback R. S. Point defect movement and annealing in collision cascades, Phys Rev B., 1997, V. 56, pp. 2421–2431.
56. Voskoboinikov R. E., Osetsky Yu. N., Bacon D. J. Computer simulation of primary damage creation in displacement cascades in copper. I. Defect creation and cluster statistics, J. Nucl. Mater., 2008, V. 377, P. 385–395.
57. Norgett L. K., Robinson M. T., TorrensI. M. A proposed method for calculating displacement dose rates, Nucl. Eng. Design., 1975, No 33, pp. 50–54.
58. Nordlund K., Sand A. E., Granberg F., Zinkle S. J., Stoller R., Averback R. S., Suzudo T., Malerba L., Banhart F., Weber W. J., Willaime F., Dudarev S., Simeone D., Primary Radiation Damage in Materials: Review of Current Understanding and Proposed New Standard Displacement Damage Model to Incorporate In-cascade Mixing and Defect Production Efficiency Effects, OECD Nuclear Energy Agency, Paris: OECD, 2015.
59. Broeders C. H. M., Konobeyev A. Yu., Defect production efficiency in metals under neutron irradiation, J. Nucl. Mater., 2004, No 328, pp. 197–214.
60. Konobeyev A. Yu., Fischer U., Korovin Yu. A., Simakov S. P., Evaluation of effective threshold displacement energies and other data required for the calculation of advanced atomic displacement cross-sections, Nuclear Energy and Technology, 2017, No 3, pp. 169–175.
61. Bacon D. J., Osetsky Yu. N., Stoller R., Voskoboinikov R. E., MD description of damage production in displacement cascades in copper and α-iron, J. Nucl. Mater., 2003, No 323, pp. 152– 162.
62. Bacon D. J., Gao F., Osetsky Yu. N. The primary damage state in FCC, BCC and HCP metals as seen in molecular dynamics simulations, J Nucl Mater, 2000, No 276, pp. 1–12.
63. Voskoboinikov , R ., Statistics of primary radiation defects in pure nickel, Nucl. Instr. Meth. Phys. Res. B., 2020, No 478, pp. 201–204.
64. Osetsky, Y u . , Rodney, D ., Atomic-Level Dislocation Dynamics in Irradiated Metals, Comprehensive Nuclear Materials, V. 1, Amsterdam: Elsevier, 2020, pp. 663–688.
65. Voskoboinikov , R . E . , Osetsky, Y u . N . , Bacon , D . J ., Interaction of 1/3ۃ112ത0ۄሺ0001ሻ edge dislocation with point defect clusters created in displacement cascades in α-zirconium, Mater. Sci. Eng. A., 2005, V. 400–401, pp. 49–53.
Review
For citations:
Voskoboinikov R.E. A study of primary damage formation in collision cascades in titanium. Voprosy Materialovedeniya. 2021;(4(108)):216-232. (In Russ.) https://doi.org/10.22349/1994-6716-2021-108-4-216-232