

Investigation of the properties, structure and quality of the alloy Ti–4.25Al–2V blanks produced by direct laser deposition
https://doi.org/10.22349/1994-6716-2022-109-1-40-53
Abstract
The article presents the results of studies of the mechanical properties of the titanium alloy Ti4.25Al-2V, fabricated by direct metal deposition on equipment developed by State Marine Technical University. A comparative analysis of the mechanical properties of the deposited metal in comparison with cast and forged metal is carried out. It is shown that the high level of its properties as regards cast metal is associated with differences in its structure, in particular, with high dispersion
Keywords
About the Authors
V. P. LeonovRussian Federation
Dr Sc (Eng)
49 Shpalernaya St, 191015 St Petersburg
N. F. Molchanova
Russian Federation
49 Shpalernaya St, 191015 St Petersburg
A. A. Voropaev
Russian Federation
3 Lotsmanskaya St, 190121 St Petersburg
S. A. Shalnova
Russian Federation
3 Lotsmanskaya St, 190121 St Petersburg
29 Polytechnicheskaya St, 195251 St Petersburg
E. V. Chudakov
Russian Federation
Cand Sc. (Eng)
49 Shpalernaya St, 191015 St Petersburg
M. V. Iksanov
Russian Federation
49 Shpalernaya St, 191015 St Petersburg
References
1. Korsmik, R., Tsybulsky, I., Rodionov, A., Klimova-Korsmik, O., Gogolukhina, M., Ivanov, S., Zadykyan, G., Mendagaliev, R., The approaches to design and manufacturing of large-sized marine machinery parts by direct laser deposition, Procedia CIRP, 2020, V. 94, pp. 298–303. DOI 10.1016/j.procir.2020.09.056.
2. Ushkov, S.S., et al., Proizvodstvo i primeneniye litykh izdeliy iz splavov na osnove titana [Manufacture and use of cast products from alloys based on titanium], Voprosy Materialovedeniya, 1999, No 3, pp. 126–137.
3. Kudryavtsev, A.S., Molchanova, N.F., Travin, V.V., Vysokoprochnye svarivaemye liteinye titanovye splavy dlya energeticheskogo oborudovaniya [High-strength weldable cast titanium alloys for power equipment], Voprosy Materialovedeniya, 2009, No 3, pp. 162–171.
4. Turichin, G.A., Klimova, O.G., Zemlyakov, E.V., Babkin, K.D., Kolodyazhny, D.Y., Shamray, F.A., Travyanov, A.Y., Petrovsky, P.V., Technological Aspects of High-Speed Direct Laser Deposition Based on Heterophase Powder Metallurgy, Physics Procedia, Lappeenranta, 2015, pp. 397–406. DOI: 10.1016/j.phpro.2015.11.054.
5. Turichin, G.A., Klimova-Korsmik, O.G., Gushchina, M.O., Shalnova, S.A., Korsmik, R.S., Cheverikin, V.V., Tataru, A.S., Features of Structure Formation in б+в Titanium Alloys, Procedia CIRP, 2018, V. 74, pp. 188–191. DOI: 10.1016/j.procir.2018.08.091.
6. Sklyar, M.O., Klimova-Korsmik, O.G., Cheverikin, V.V., Formation structure and properties of parts from titanium alloys produced by direct laser deposition, Solid State Phenomena, 2017, V. 265, pp. 535–541. DOI: 10.4028/www.scientific.net/SSP.265.535.
7. Zlenko, M.A., Nagaitsev, M.V., Dovbysh, V.M., Additivnye tekhnologii v mashinostroenii [Additive technologies in mechanical engineering]: manual for engineers, Moscow: NAMI, 2015.
8. Klimova-Korsmik, O.G., Gushchina, M.O., Shalnova, S.A., et al., Issledovanie struktury i svoistv izdeliy iz titanovogo splava VT6, poluchennykh metodom priamogo lazernogo vyrashchivaniya s posleduyushchey termicheskoy obrabotkoy [Investigation of the structure and properties of products from titanium alloy VT6 obtained by direct laser growth with subsequent heat treatment], Titan, 2019, No 3, pp. 8–14.
9. Dutta, B., Froes, F.H., Additive Manufacturing of Titanium Alloys, Elsevier Inc., 2016.
10. Mahamood, R.M., Characterizing the Effect of Processing Parameters on the porosity of laser deposited titanium alloy powder, Proceedings of the International MultiConference of Engineers and Computer Scientist, 2014, V. 2, p. 5.
11. Turichin, G.A., Babkin, K.D., Zemlyakov, E.V., Development of the theory and tech- nology of direct laser growth of large-sized products for various applications, Collection of reports of the 8th Int. Conf. Beam Technologies and Laser Application, 2015, pp. 268–284.
12. Bochvar, G.A., Borvetsovskaya, K.M., Govorov, V.G., Bolotina, T.N., Bilibina E.N., Izgotovlenie diskov iz poroshkov-granul splava VT9 [Production of disks from powdergranules of alloy VT9], 3rd international conference “Titan”, Moscow, 1976, pp. 463–468.
13. Gorynin, I.V., Chechulin, B.B., Titan v mashinostroenii [Titanium in mechanical engineering], Moscow: Mashinostroenie, 1990.
14. Ilyin, A.A., Kolachev, B.A., Polkin, I.S., Titanovye splavy. Sostav, struktura, svoistva [Titanium alloys. Composition, structure, properties]: reference book, Moscow: VILS-MATI, 2009.
15. Gushchina, M.O., Ivanov, S.Y., Vildanov, A.M., Effect of Temperature Field on Mechanical Properties of Direct Laser Deposited Ti-6Al-4V Alloy, IOP Conference Series: Materials Science and Engineering, 2020, V. 969 (1), Art. 012103.
16. Saboori, A., Gallo, D., Biamino, S., Fino, P., Lombardi, M., An Overview of Additive Manufacturing of Titanium Components by Directed Energy Deposition: Microstructure and Mechanical Properties, Applied Sciences, 2017, V. 7 (9), No 883. DOI: 10.3390/app7090883.
17. Afanasieva, L.E., Zakonomernosti formirovaniya struktury splava Ti-6Al-4V pri posloynom elektronno-luchevom plavlenii i goriachem izostaticheskom pressovanii [Patterns of structure formation of the Ti-6Al-4V alloy during layer-by-layer electron-beam melting and hot isostatic pressing], Voprosy Materialovedeniya, 2017, No 3, pp. 27–34.
18. Zhang, Q., Zhang, S., Zheng, M., Ou, Y. et al., Effects of Powder Feed Rate on Formation of Fully Equiaxed в Grains in Titanium Alloys Fabricated by Direct Energy Deposition, Metals, 2020, V. 10 (4), No 521. DOI: 10.3390/met10040521
19. Carroll, B.E., Palmer, T.A., Beese, A.M., Anisotropic tensile behavior of Ti-6Al-4V components fabricated with direct energy deposition additive manufacturing, Acta Materialia, 2015, V. 87, pp. 309–320.
Review
For citations:
Leonov V.P., Molchanova N.F., Voropaev A.A., Shalnova S.A., Chudakov E.V., Iksanov M.V. Investigation of the properties, structure and quality of the alloy Ti–4.25Al–2V blanks produced by direct laser deposition. Voprosy Materialovedeniya. 2022;(1(109)):40-53. (In Russ.) https://doi.org/10.22349/1994-6716-2022-109-1-40-53