

Application of carbon nanotubes produced by CVD-method for supercapacitor with LiPF6-based electrolyte
https://doi.org/10.22349/1994-6716-2022-109-1-64-76
Abstract
The paper studies carbon nanotubes (CNTs) synthesized by chemical vapor deposition (CVD) method on Fe-0.7Co/2.1Al2O3, Fe-Co/2.1Al2O3, and Co-Mo/Al2O3-MgO catalysts for supercapacitor electrodes with LiPF6-based electrolyte. It was found that the specific capacitance of 150–200 F/g for electrodes made of a mixture of carbon materials and graphite depends significantly on the conditions of creating intergranular contacts between graphite particles and CNTs that form a system of vacancies for ion introduction, in which reversible intercalation of PF6--anions occurs with minimal difficulties.
About the Authors
А. V. ShchegolkovRussian Federation
Cand Sc. (Eng)
106 Sovetskaya St, 392000 Tambov
М. S. Lipkin
Russian Federation
Dr Sc (Eng)
132 St Prosveshcheniya, Novocherkassk, 346428 Rostov region
А. V. Shchegolkov
Russian Federation
106 Sovetskaya St, 392000 Tambov
132 St Prosveshcheniya, Novocherkassk, 346428 Rostov region
А. Semenkova
Russian Federation
132 St Prosveshcheniya, Novocherkassk, 346428 Rostov region
References
1. Yükseltürk, A., Wewer, A., Bilge, P., Dietrich, F., Recollection center location for end-of-life electric vehicle batteries using fleet size forecast: Scenario analysis for Germany, Procedia CIRP, 2021, V. 96, pp. 260–265.
2. He, Y., Wang, Zh., Zhang, Y., The design, test and application on the satellite separation system of space power supply based on graphene supercapacitors, Acta Astronautica, 2021, V. 186, September.
3. Vukajlović N., Milićević D., Dumnić B., Popadić B. Comparative analysis of the supercapacitor influence on lithium battery cycle life in electric vehicle energy storage, Journal of Energy Storage, 2020, V. 31, pp. 101603.
4. Jun, H.K., Hybrid Nanostructured Carbon Materials for Supercapacitors, Reference Module in Earth Systems and Environmental Sciences, 2021. DOI:10.1016/B978-0-12-819723-3.00044-5
5. Chandran, V., Ghosh, A., Patil, C.K., Mohanavel, V., Priya, A.K., Rahim, R., Madavan, R., Muthuraman, U., Karthick, A., Comprehensive review on recycling of spent lithiumion batteries, Materials Today: Proceedings, 2021, V. 47, Part 1, pp. 167–180.
6. Karthikeyan, S., Narenthiran, B., Sivanantham, A., Bhatlu, L.D., Maridurai, T., Supercapacitor: Evolution and review, Materials Today: Proceedings, 2021, V. 46, Part 9, pp. 3984– 3988.
7. Saha, P., Dey, S., Khanra, M., Second-life applications of supercapacitors: Effective capacitance prognosis and aging, Journal of Power Sources, 2021, V. 496, pp. 229824.
8. Borenstein, A., Hanna, O., Attias, R., Luski, S., Brousse, T., Aurbach, D., Carbon-based composite materials for supercapacitor electrodes: a review, J. Mater. Chem., 2017, V. 5, pp. 12653–12672.
9. Ye, T.T., Sun, Y., Zhao, X., Lin, B.P., Yang, H., Zhang, X.Q., Guo, L.X., Long-term-stable, solution-processable, electrochromic carbon nanotubes/polymer composite for smart supercapacitor with wide working potential window, J. Mater. Chem. A., 2018, V. 6, pp. 18994–19003.
10. Xin, S., Yang, N., Gao, F., Zhao, J., Li, L., Teng, C., Three-dimensional polypyrrole-derived carbon nanotube framework for dye adsorption and electrochemical supercapacitor, Applied Surface Science, 2017, V. 414, pp. 218–223.
11. Jiang, W., Pan, J., Liu, X., A novel rod-like porous carbon with ordered hierarchical pore structure prepared from Al-based metal-organic framework without template as greatly enhanced performance for supercapacitor, Journal of Power Sources, 2019, V. 409, pp. 13–23.
12. Wei, W., Liu, W., Chen, Z.J., Xiao, R., Zhang, Y., Du, C., Wan, L., Xie, M.J., Chen, J., Tian, Z.F., Template-assisted construction of N, O-doped mesoporous carbon nanosheet from hydroxyquinoline-Zn complex for high-performance aqueous symmetric supercapacitor,. Appl. Surf. Sci., 2020, V. 509.
13. Cao, K.L.A., Rahmatika, A.M., Kitamoto, Y., Nguyen, M.T.T., Ogi, T., Con- trollable synthesis of spherical carbon particles transition from dense to hollow structure derived from Kraft lignin, Journal of Colloid and Interface Science, 2021, V. 589, pp. 252–263.
14. Zhang, Y.-F., Du, F.-P., Chen, L., Law, W.-C., Tang, C.-Y., Synthesis of deformable hydrogel composites based on Janus bilayer multi-walled carbon nanotubes/host-guest complex structure, Composites Part B: Engineering, 2019, V. 164, pp. 121–128.
15. Mandal, M., Subudhi, S., Alam, I., Subramanyam, B., Patra, S., Raiguru, J., Das, S., Mahanandia, P., Facile synthesis of new hybrid electrode material based on activated carbon/multiwalled carbon nanotubes@ZnFe2O4 for supercapacitor applications, Inorganic Chemistry Communications, 2021, V. 123, pp. 108332.
16. Yu, C., Li, H., Luo, J., Zheng, M., Zhong, W., Yang, W., Metal-organic coordination polymer/multi-walled carbon nanotubes composites to prepare N-doped hierarchical porous carbon for high performance supercapacitors, Electrochimica Acta, 2018, V. 284, pp. 69–79.
17. Shchegolkov, A.V., Burakova, E.A., Dyachkova, T.P., Orlova, N.V., Komarov, F.F., Lipkin, M.S., Synthesis and functionalization of carbon nanotubes for supercapacitor electrodes, Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol., 2020, V. 63. pp. 74–81.
18. Meng, J.S., Niu, C.J., Xu, L.H., Li, J.T., Liu, X., Wang, X.P., Wu, Y.Z., Xu, X.M., Chen, W.Y., Li, Q., Zhu, Z.Z., Zhao, D.Y., Mai, L.Q., General oriented formation of carbon nanotubes from metal-organic frameworks, J. Am. Chem. Soc., 2017, V. 139, pp. 8212–8221.
19. Lin, J., Jin, H., Ge, X., Yang, Y., Huang, G., Wang, J., Li, F., Li, H., Wang, S., Investigation of the parameters of carbon nanotube growth on zirconium diboride supported Ni catalyst via CVD, Diamond and Related Materials, 2021, V. 115, p. 108347.
20. Roy, A., Das, D., Synthesis of single-walled, bamboo-shaped and Y-junction carbon nanotubes using microwave plasma CVD on low-temperature and chemically processed catalysts, Journal of Physics and Chemistry of Solids, 2021, V. 152, p. 109971.
21. Lu, S., Ma, L., Shen, X., Tong, H., One-step copper-catalyzed synthesis of porous carbon nanotubes for high-performance supercapacitors, Microporous and Mesoporous Materials, 2021, V. 310, p. 110670.
22. Pérez-Rodríguez S., Alegre C., Sebastián D., Lázaro M. J., Emerging Carbon Materials for Catalysis, Ch. 10: Emerging carbon nanostructures in electrochemical processes, Sadjadi, S., (Ed.), Elsevier, 2021, pp. 353–388.
23. Niu, C., Sichel, E.K., Hoch, R., Moy, D., Tennet, H., High power electrochemical capacitors based on carbon nanotube electrodes, Appl Phys Lett, 1997, V.70, pp. 1480–1482.
24. Frackowiak E., Bèguin F., Electrochemical storage of energy in carbon nanotubes and nanostructured carbons, Carbon, 2002, V. 40, Issue 10, pp. 1775–1787.
25. Popova, O.V., Serbinovsky, A.M., Shkurakova, A.M., Bisulfat grafita i termorasshi- reny grafit iz gidroliznogo lignina [Graphite bisulfate and thermally expanded graphite from hydrolytic lignin], Elektrokhimicheskaya energetika, 2010, V. 10, No 1, pp. 43–47.
26. Kumar, S., Bhauriyal, P., Pathak, B., Computational Insights into the Working Mechanism of the LiPF6-Graphite Dual-Ion Battery, J. Phys. Chem. C, 2019, V. 123, pp. 23863−23871.
27. Kolotyrkin, Ya.M., Elektrokhimiya metallov v nevodnykh rastvorakh [Electrochemistry of metals in non-aqueous solutions], Moscow: Mir, 1974, p. 65.
Review
For citations:
Shchegolkov А.V., Lipkin М.S., Shchegolkov А.V., Semenkova А. Application of carbon nanotubes produced by CVD-method for supercapacitor with LiPF6-based electrolyte. Voprosy Materialovedeniya. 2022;(1(109)):64-76. (In Russ.) https://doi.org/10.22349/1994-6716-2022-109-1-64-76