Preview

Voprosy Materialovedeniya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Post-radiation annealing influence on the evolution of the materials properties of the supporting structures of WWER-440 reactor vessels. Part 2: Analysis of the influence of material annealing after low temperature irradiation

https://doi.org/10.22349/1994-6716-2022-109-1-184-198

Abstract

The results of studying the influence of annealing temperature on the restoration degree of the materials properties of WWER-440 reactor vessels supporting structures (low-strength ferritic-pearlitic steel and its weld metal) irradiated at low temperatures (50–90°C) are analyzed. The main processes that occur during the annealing of the supporting structures materials after low-temperature irradiation and lead to an ambiguous effect of the annealing temperature on the recovery degree of the properties of supporting structures materials are revealed. The influence of impurities (phosphorus and copper) on the embrittlement of the material during irradiation and on the recovery of its properties after annealing is considered.

About the Authors

B. Z. Margolin
НИЦ «Курчатовский институт» – ЦНИИ КМ «Прометей»
Russian Federation


E. V. Yurchenko
НИЦ «Курчатовский институт» – ЦНИИ КМ «Прометей»
Russian Federation


A. M, Morozov
НИЦ «Курчатовский институт» – ЦНИИ КМ «Прометей»
Russian Federation


A. Ya. Varovin
НИЦ «Курчатовский институт» – ЦНИИ КМ «Прометей»
Russian Federation


S. V. Rogozhkin
НИЦ «Курчатовский институт» – ИТЭФ
Russian Federation


A. A. Nikitin
НИЦ «Курчатовский институт» – ИТЭФ
Russian Federation


References

1. Alekseenko, N.N., Amaev, A.D., Gorynin, I.V., Nikolaev, V.A., Radiation Damage of Nuclear Power Plant Pressure Vessel Steels, Am. Nucl. soc., LaGrangeark, Illin., USA, 1997.

2. Pachur, D., Radiation annealing mechanisms of low-alloy reactor pressure vessel steels dependent on irradiation temperature and neutron fluence, Nuclear technology, 1982, V. 59, No 12, p. 463.

3. Margolin, B.Z., Yurchenko, E.V., Kostylev, V.I., Morozov, A.M., Varovin, A.Ya., Rogozhkin, S.V., Nikitin, A.A., Osobennosti radiatsionnogo okhrupchivaniya materialov opornykh konstruktsiy korpusov reaktorov tipa VVER. Chast 2: Analiz vypolnennykh issledovaniy [Peculiarities of Radiation Embrittlement of Support Structure Materials for VVER Type Reactor Vessels. Part 2: Analysis of completed studies], Voprosy Materialovedeniya, 2018, No 2(94), pp. 193–208.

4. Shalaev, A.M., Radiatsionno-stimulirovannaya diffuziya v metallakh [Radiation-stimulated diffusion in metals], Moscow: Atomizdat, 1972, p. 148.

5. Miller, M.K., Pareige P., Burke M.G. Understanding Pressure Vessel Steels: An Atom Probe Perspective, Mater. Character, 2000, No 44, p. 235.

6. Ahsby, M.F., About the Orovan stress, Physics of Strength and Plasticity, Argon, A. (Ed.), , MIT Press, Cambridge (MA), 1970.

7. Tan, L., Busby, J.T., Formulating the strength factor α for improved predictability of radiation hardening, J. Nucl. Mater., 2015, V. 465, pp.724–730.

8. Lucas, G.E., The evolution of mechanical property change in irradiated austenitic stainless steels, J. Nucl. Mater., 1993, V. 206, pp. 287–305.

9. Kudo, T., Kasada, R., Kimura, A., Hono, K., Fukuya, K., Matsui, H., Optical characteristics of aluminium coated fused silica core fiers under 14MeV fusion neutron irradiation, Mater. Trans., 2004, JIM 45, pp. 338–341.

10. Russell, K.C., Brown, L.M., A dispersion strengthening model based on differing elastic moduli applied to the iron-copper system, Acta Metallurgica 1972, No 20 (7), pp. 969–974.

11. Fisher, S.B., Harbottle, J.E., Aldridge, N., Radiation hardening in magnox pressurevessel steels, Philosophical Transactions of the Royal Society A, 1985, V. 315, Issue 1532, pp. 301–332. DOI: 10.1098/rsta.1985.0042.

12. Wagner, A., Ulbricht, A., Bergner, F., Altstadt, E., Influence of the copper impurity level on the irradiation response of reactor pressure vessel steels investigated by SANS, Nucl. Instr. Meth. Phys. Res. B, 2012, V. 280, pp. 98–102.

13. Bergner, F., Gillemot, F., Hernбndez-Mayoral, M., Serrano, M., Tцrцk, G., Ulbricht, A., Altstadt, E., Contributions of Cu-rich clusters, dislocation loops and nanovoids to the irradiation-induced hardening of Cu-bearing low-Ni reactor pressure vessel steels, J. Nucl. Mater., 2015, V. 461, pp. 37–44.

14. Lu, Z., Faulkner, R.G., Jones, R.B., Flewitt, P.E.J., Radiation and thermally induced phosphorus intergranular segregation in pressure vessel steels, J. of ASTM Internat., 2005, V. 2, No 8, pp. 180–194.

15. Nishiyama, Y., Onizawa, K., Suzuki, M., Anderegg, J.W., Nagai, Y., Toyama, T., Hasegawa, M., Kameda, J., Effects of neutron-irradiation-induced intergranular phosphorus segregation and hardening on embrittlement in reactor pressure vessel steels, Acta Materialia, 2008, V. 56, pp. 4510–4521.

16. Lejcek, P., Grain boundary segregation in metals, Springer Series in Materials Science, 2010.

17. Rybin, V.V., Nikolaev, V.A., O mekhanizmakh, opredelyayushchikh zavisimost radiatsionnogo okhrupchivaniya korpusnoy stali ot ee khimicheskogo sostava [On the mechanisms that determine the dependence of radiation embrittlement of vessel steel on its chemical composition], Voprosy Materialovedeniya, 1995, No 1, p. 27.

18. Margolin, B.Z., Yurchenko, E.V., Potapova, V.A., K voprosu o modelirovanii teplovogo stareniya posredstvom neytronnogo oblucheniya i otzhiga [On the issue of modeling thermal aging by neutron irradiation and annealing], Voprosy Materialovedeniya, 2016, No 3 (87), зp. 211–219.

19. Margolin, B.Z., Shvetsova, V.A., Gulenko, A.G., Radiation embryonic modeling in multi-scale approach to brittle fracture of RPV steels, Int. J. of Fracture, 2013, V. 179, Is. 1, pp. 87–108.

20. Margolin, B.Z., Shvetsova, V.A., Gulenko, A.G., Kostylev, V.I., Prometey local approach to brittle fracture: development and application, Eng. Fracture Mech, 2008, V. 75, pp. 3483–3498.

21. Margolin, B.Z., Yurchenko, E.V., Kostylev, V.I., Morozov, A.M., Varovin, A.Ya., Rogozhkin, S.V., Nikitin, A.A., Osobennosti radiatsionnogo okhrupchivaniya materialov opornykh konstruktsiy korpusov reaktorov tipa WWER (Chast 1: Eksperimentalnye issledovaniya). [Peculiarities of Radiation Embrittlement of Support Structure Materials for WWER Type Reactor Vessels. Part 1: Experimental studies], Voprosy Materialovedeniya, 2018, No. 2(94), pp. 175–192.

22. Lidbury, D., Bugat, S., Diard, O., Keim, E., Marini, B., Viehrig, H.-W., Planman, T., Wallin, K., PERFECT—Prediction of Irradiation Damage Effects in Reactor Components: Update of Progress in RPV Mechanics Sub-Project, Proceedings of PVP 2007, 2009, Art. 26076, pp. 235–243. DOI: 10.1115/PVP2007-26076.

23. Utevsky, L.M., Glikman, E.E., Kark, G.S., Obratimaya otpusknaya khrupkost stali i splavov zheleza [Reversible temper brittleness of steel and iron alloys], Moscow: Metallurguiya, 1987.

24. Druce, S.G., English, C.A., Foreman, A.J.E., et al. The modeling of irradiationenchanced phosphorus segregation in neutron irradiated reactor pressure vessel submerged-arc welds., ASTM STP 1270, 1996, pp. 119–137.

25. Gurovich, B., Kuleshova, E., Shtrombakh, Ya., Fedotova, S., Zabusov, O., Prikhodko, K., Zhurko, D.J., Evolution of weld metals nanostructure and properties under irradiation and recovery annealing of VVER-type reactors, Nucl. Mater. 2013, V. 434, pp. 72–84.

26. Margolin, B.Z., Yurchenko, E.V., Morozov, A.M., Pirogova, N.E., Analiz effekta flaksa neytronov primenitel'no k radiatsionnomu okhrupchivaniyu materialov korpusov reaktorov VVER [Analysis of the neutron flux effect in relation to radiation embrittlement of materials of WWER reactor vessels], Voprosy Materialovedeniya, 2012, No 2(70), pp. 177–196.

27. Margolin, B.Z., Yurchenko, E.V., Morozov, A.M., Chistyakov, D.A., Novy metod prognozirovaniya teplovogo stareniya staley korpusov reaktorov tipa WWER [A new method for predicting thermal aging of steels of WWER type reactor vessels], Voprosy Materialovedeniya, 2013, No 3 (75), pp. 120–134.

28. Pechenkin, V.A., O segregatsii na granitsakh zeren pri obluchenii mnogokomponentnykh splavov [On segregation at grain boundaries during irradiation of multicomponent alloys], Preprint FEI-2788, Obninsk, 1999, V. 46, p. 30.

29. Pechenkin, V.A., Stepanov, I.A., Konobeev Yu.V., Modeling of phosphorus accumu- lation on grain boundaries in iron alloys under irradiation, Effects of Radiation on Materials: 20th Int. Symp., ASTM STP 1405, 2001, pp. 174–187.

30. Margolin, B.Z., Yurchenko, E.V., Kostylev, V.I., Morozov, A.M., Varovin, A.Ya., Rogozhkin, S.V., Nikitin, A.A., Osobennosti radiatsionnogo okhrupchivaniya materialov opornykh konstruktsiy korpusov reaktorov tipa WWER. Chast 2: Analiz vypolnennykh issledovaniy [Peculiarities of Radiation Embrittlement of Materials of Supporting Structures of WWER Type Reactor Vessels. Part 2: Tests’ Analysis], Voprosy Materialovedeniya, 2018, No 2 (94)], pp. 193–208.

31. Philippe, T., Duguay, S., Blavette, D., Clustering and pair correlation function in atom probe tomography, Ultramicroscopy, 2010, V. 110, pp. 862–865.

32. Philippe, T., Duguay, S., Grancher, G., Blavette, D., Point process statistics in atom probe tomography, Ultramicroscopy, 2013, V. 132, pp. 114–120.

33. Jägle, E., Choi, P., Raabe, D., The Maximum Separation Cluster Analysis Algorithm for Atom-Probe Tomography: Parameter Determination and Accuracy, Microscopy and Microanalysis, 2014, V. 20(6), pp. 1662–1671.


Review

For citations:


Margolin B.Z., Yurchenko E.V., Morozov A.M., Varovin A.Ya., Rogozhkin S.V., Nikitin A.A. Post-radiation annealing influence on the evolution of the materials properties of the supporting structures of WWER-440 reactor vessels. Part 2: Analysis of the influence of material annealing after low temperature irradiation. Voprosy Materialovedeniya. 2022;(1(109)):184-198. (In Russ.) https://doi.org/10.22349/1994-6716-2022-109-1-184-198

Views: 204


ISSN 1994-6716 (Print)