

Influence of thermomechanical exposure on the structure of hydrides in irradiated E110 alloy cladding pipes under the conditions of long-term dry storage of spent nuclear fuel
https://doi.org/10.22349/1994-6716-2022-109-1-199-214
Abstract
The penetration of atomic hydrogen into the cladding material of fuel elements of WWER-1000 reactors due to interaction with the coolant during operation can subsequently significantly reduce their plasticity characteristics with a decrease in temperature during long-term dry storage of spent nuclear fuel (SNF) due to the formation of brittle hydrides. The morphology of hydrides influenced by the hydrogen content, storage temperature and circumferential stresses plays a decisive role in the embrittlement of the fuel cladding material. Associated radial hydrides are of particular danger; they constitute the most favorable path for crack propagation.
In the present work, thermomechanical tests of irradiated fuel claddings samples made of the E110 alloy were carried out, simulating normal and emergency conditions of long-term dry storage. It was shown that under the conditions considered, the formation of a significant amount of radially oriented hydrides was observed, leading to degradation of mechanical properties (embrittlement) fuel cladding.
Keywords
About the Authors
R. A. KurskyRussian Federation
1, Akademika Kurchatova Square, 123182 Moscow
A. V. Rozhkov
Russian Federation
1, Akademika Kurchatova Square, 123182 Moscow
O. O. Zabusov
Russian Federation
Cand. Sc (Phys.-Math.)
1, Akademika Kurchatova Square, 123182 Moscow
31 Kashirskoe shosse, 115409 Moscow
D. A. Maltsev
Russian Federation
Cand. Sc (Eng.)
1, Akademika Kurchatova Square, 123182 Moscow
M. A. Skundin
Russian Federation
Cand. Sc (Eng.)
1, Akademika Kurchatova Square, 123182 Moscow
A. P. Bandura
Russian Federation
1, Akademika Kurchatova Square, 123182 Moscow
E. A. Vasilieva
Russian Federation
1, Akademika Kurchatova Square, 123182 Moscow
A. A. Shishkin
Russian Federation
49 Kashirskoe shosse, 115409 Moscow
References
1. Alyokhina, S., Thermal analysis of certain accident conditions of dry spent nuclear fuel storage, Nucl. Eng. Technol., 2018, V. 50, No 5, pp. 717–723.
2. Billone, M.C., Burtseva, T.A., Einziger R.E., Ductile-to-brittle transition temperature for high-burnup cladding alloys exposed to simulated drying-storage conditions, J. Nucl. Mater., 2013, V. 433, No 1–3, pp. 431–448.
3. Shmakov, A., Kalin, B., Smirnov, E., Vodorod v splavakh tsirkoniya. Gidridnoe okhrupchivanie i razrushenie tsirkoniyevykh materialov [Hydrogen in zirconium alloys. Hydride Embrittlement and Fracture of Zirconium Materials], LAPLAMBERT Academic Publishing, 2014.
4. Min, S.J., Kim, M.S., Kim, K.T., Cooling rate- and hydrogen content-dependent hydride reorientation and mechanical property degradation of Zr-Nb alloy claddings, J. Nucl. Mater., 2013, V. 441, No 1–3, pp. 306–314.
5. Aomi, M., Baba, T., Miyashita, T., Kamimura, K., Yasuda, T., Shinohara, Y., Takeda, T., Evaluation of hydride reorientation behavior and mechanical properties for high-burnup fuel-cladding tubes in interim dry storage, J. ASTM Int., 2008, V. 5, No 9, pp. 651–673.
6. Motta, A.T., Capolungo, L., Chen, L.Q., Cinbiz, M.N., Daymond, M.R., Koss, D.A., Lacroix, E., Pastore, G., Simon, P.C.A., Tonks, M.R., Wirth, B.D., Zikry, M.A., Hydrogen in zirconium alloys: a review, J. Nucl. Mater., 2019, V. 518, pp. 440–460.
7. Billone, M.C., Burtseva, T.A., Han, Z., Liu, Y.Y., Used fuel disposition campaign. Embrittlement and DBTT of high-burnup PWR fuel cladding alloys, FCRD-UFD-2013-000401, Argonne National Laboratory, 2013.
8. Billone, M.C. Burtseva, T.A., Dobrzynski, J.P., McGann, D.P., Byrne, K., Han, Z., Liu, Y.Y., Used fuel disposition campaign phase 1. Ring compression testing of high-burnup cladding, FCRD-USED-2012-000039, Argonne National Laboratory, 2011.
9. Desquines, J., Drouan, D., Billone, M., Puls, M.P., March, P., Fourgeaud, S., Getrey, C., Elbaz, V., Philippe, M., Influence of temperature and hydrogen content on stressinduced radial hydride precipitation in Zircaloy-4 cladding, J. Nucl. Mater., 2014, V. 453, No 1–3, pp. 131–150.
10. Kamimura, K., Integrity criteria of spent fuel for dry storage in Japan, International Seminar on Spent Fuel Storage, Tokyo, 2010.
11. Kursky, R.A., Rozhkov, A.V., Zabusov, O.O., Gaiduchenko, A.B., Bra- gin, A.S., Maltsev, D.A., Safonov, D.V., Shishkin, A.A., Factors Influencing Reorientation of Hydrides in Unirradiated Cladding Tubes from E110 Alloy under Conditions of Long-Term Dry Storage of SNF, Physics of Atomic Nuclei, 2021, V. 84, No 10, pp. 1665–1671.
12. Kursky, R.A., Safonov, D.V., Rozhkov, A.V., Zabusov, O.O., Frolov, A.S., Kuleshova, E.A., Alekseeva, E.V., Bragin, A.S., Vasilieva, E.A., Gaiduchenko, A.B., Maltsev, D.A., Skundin, M.A., Reorientation of Hydrides in Unirradiated Clad Tubes Madeof Alloy E110 under Conditions Simulating Long-Term Dry Storage of Spent Nuclear Fuel, Physics of Metals and Metallography, 2021, V. 122, No 9, pp. 924–932.
13. Lee, J.M., Kim, H.A., Kook, D.H., Kim, Y.S., A study on the effects of hydrogen content and peak temperature on threshold stress for hydride reorientation in Zircaloy-4 cladding, J. Nucl. Mater., 2018, V. 509, pp. 285–294.
14. Standard specification for wrought zirconium alloy seamless tubes for nuclear reactor fuel cladding, ASTM B811-02, ASTM International, West Conshohocken, PA, 2007.
15. Yegorova, L., Asmolov, V., Abyshov, G., Malofeev, V., Avvakumov, A., Kaplar, E., Lioutov, K., Shestopalov, A., Bortash, A., Maiorov, L., Mikitiouk, K., Polvanov, V., Smirnov, V., Goryachev, A., Prokhorov, V., Pakhnitz, V., Vurim, A., Data base on the behavior of high burnup fuel rods with Zr-1% Nb cladding and UO2 fuel (VVER type) under reactivity accident conditions: Description of test procedures and analytical methods, NUREG/IA-0156, U.S. Nuclear Regulatory Commission, 1999. V. 2, pp. 6.16–6.35.
16. Motta, A.T., Chen, L.Q., Hydride formation in zirconium alloys, JOM, 2012, V. 64, No 12, pp. 1403–1408.
17. Afrov, A.M., Andrushechko, S.A., Ukraintsev, V.F., Vasiliev, B.Yu., Kosourov, K.B., Semchenkov, Yu.M., Kokosadze, E.L., Ivanov, E.A., VVER-1000: fizicheskie osnovy ekspluatatsii, yadernoe toplivo, bezopasnost [VVER-1000 Key words: physical bases of exploitation, nuclear fuel, safety], Moscow: Logos, 2006.
18. Markelov, V.A. Sovershenstvovanie sostava i struktury splavov tsirkoniya v obespechenie rabotosposobnosti tvelov, TVS i trub davleniya aktivnykh zon vodookhlazhdaemykh reaktorov s uvelichennym resursom i vygoraniyem topliva [Improving the composition and structure of zirconium alloys to ensure the operability of fuel rods, fuel assemblies and core pressure pipes of water-cooled reactors with extended service life and fuel burnup]: Dissertation for the degree of doctor of engineering sciences, Moscow, 2010.
19. Stafford, D.S., Multidimensional simulations of hydrides during fuel rod lifecycle, J. Nucl. Mater., 2015, V. 466, pp. 362–372.
20. Couet, A., Motta, A.T., Comstock, R.J., Hydrogen pickup measurements in zirconium alloys: relation to oxidation kinetics, J. Nucl. Mater., 2014, V. 451, No 1–3, pp. 1–13.
21. Shishalova, G.V., Kobylyansky, G.P., Novikov, A.M., Volkova, I.N., Opredelenie soderzhaniya vodoroda v oksidnykh plenkakh i v metalle elementov konstruktsiy iz tsirkoniyevykh splavov teplovydelyayushchikh sborok vodookhlazhdayemykh yadernykh energeticheskikh ustanovok [Determination of the hydrogen content in oxide films and in the metal of structural elements from zirconium alloys of fuel assemblies of water-cooled nuclear power plants], XI Conference on Reactor Materials Science, dedicated to the 55th anniversary of the Department of Reactor Materials Science of SSC RIAR: abstracts, Dimitrovgrad: SSC RIAR, 2019, pp. 142–144.
22. Nath, B., Lorimer, G.W., Ridley, N., Effect of hydrogen concentration and cool in grate on hydride precipitation in б-zirconium], J. Nucl. Mater., 1975, V. 58, No 2, pp. 153–162.
23. Kolesnik, M., Aliev, T., Likhansky, V., Modeling of hydrogen behavior in spent fuel claddings during dry storage, J. Nucl. Mater., 2018, V. 508, pp. 567–573.
24. Simon, P.C.A., Frank, C., Chen, L.Q., Daymond, M.R., Tonks, M.R., Mot- ta, A.T., Quantifying the effect of hydride microstructure on zirconium alloys embrittlement using image analysis, J. Nucl. Mater., 2021, V. 547, Art. 152817.
25. Nikolaeva, A.V., Nikolaev, Yu.A., Kevorkyan, Yu.R., Radiatsionnoe okhrupchivaniye materialov-korpusov VVER-1000 [Radiation embrittlement of VVER-1000 vessel materials] Atomnaya energiya, 2001, V. 90, No 5, pp. 359–366.
26. Gurovich, B.A., Frolov, A.S., Kuleshova, E.A., Maltsev, D.A., Safonov, D.V., Kochkin, V.N., Alekseeva, E.V., Stepanov, N.V., Degradatsiya materialov obolochek tvelov na osnove tsirkoniya v usloviyakh ekspluatatsii reaktorov tipa VVER [Degradation of shell materials fuel elements based on zirconium in the operating conditions of VVER-type reactors], Voprosy Materialovedeniya, 2018, V. 3 (95), pp. 191–205.
27. Ruiz-Hervias, J., Simbruner, K., Cristobal-Beneyto, M., Perez-Gallego, D., Zencker, U., Failure mechanisms in unirradiated ZIRLO® cladding with radial hydrides, J. Nucl. Mater., 2021, V. 544, Art. 152668.
Review
For citations:
Kursky R.A., Rozhkov A.V., Zabusov O.O., Maltsev D.A., Skundin M.A., Bandura A.P., Vasilieva E.A., Shishkin A.A. Influence of thermomechanical exposure on the structure of hydrides in irradiated E110 alloy cladding pipes under the conditions of long-term dry storage of spent nuclear fuel. Voprosy Materialovedeniya. 2022;(1(109)):199-214. (In Russ.) https://doi.org/10.22349/1994-6716-2022-109-1-199-214