

Behavior of localized strain under hot compression of cast specimen from Mg–Al–Zn alloy
https://doi.org/10.22349/1994-6716-2022-111-3-5-16
Abstract
Axisymmetric hot compression experiments of Mg–Al–Zn specimens in intervals of temperature 250–450 °С and deformation rate (10-3-5)·10–1 s–1 were carried out. Structure formation was studied by optical microscopy. Macroscopically localized strain of cylindrical specimens depending on temperature, strain rates and initial grain size (400 μm and 1400 μm) are investigated. Localized strain diagrams for different initial grain size can be used for development and optimization of hot processing technology parameters are plotting. It is shown that increase of the grain size direct to strain localization increment tendency.
About the Authors
A. Ya. KochubeyRussian Federation
Cand Sc. (Eng).
17 Radio St, 105005 Moscow.
P. L. Zhuravleva
Russian Federation
17 Radio St, 105005 Moscow.
References
1. Lomberg, B.S., Ovsepyan, S.V., Bakradze, M.M., Letnikov, M.N., Mazalov, I.S., Primenenie novykh deformiruyemykh nikelevykh splavov dlya perspektivnykh gazoturbinnykh dvigateley [Application of new wrought nickel alloys for promising gas turbine engines], Aviatsionnye materialy i tekhnologii, 2017, No S, pp. 116-129. DOI: 10.18577/2071-9140-2017-0-S-116-129.
2. Antipov, V.V., Senatorova, O.G., Tkachenko, E.A., Vakhromov, R.O., Ali-uminievye deformiruemye splavy [Aluminum wrought alloys], Aviatsionnye materialy i tekhnologii, 2012, No S, pp. 167-182.
3. Mazalov, I.S., Filonova, E.V., Lomberg, B.S., Formirovanie struktury pri deformatsii i termicheskoy obrabotke zagotovok detaley iz nikelevogo vysokoprochnogo svarivayemogo splava VZh172 [Structure formation during deformation and heat treatment of workpieces made of high-strength nickel alloy VZh172], Trudy VIAM, 2013, No 12, Art. 01. URL: http://www.viam-works.ru (reference date 03/01/2022).
4. Kochubey, A.Ya., Medvedev, P.N., Primenenie pryamykh polyusnykh figur v issledovaniyakh protsessov strukturoobrazovaniya pri nagrevakh deformirovannykh metallov i splavov [The use of direct pole figures in the study of the processes of structure formation during heating of deformed metals and alloys], Novosti materialovedeniya. Nauka i tekhnika, 2016, No 5 (23), Art. 12. URL: http://www.materialsnews.ru (reference date 03/01/2022).
5. Bubnov, M.V., Sklyarenko, V.G., Formirovanie reglamentirovannoy struktury pri deformatsii granulirovannogo splava EP741NP [Formation of a regulated structure during deformation of the granulated alloy EP741NP], Tekhnologiya legkikh splavov, 2007, No 2, pp. 54-55.
6. Filonova, E.V., Bakradze, M.M., Kochubey, A.Ya., Vavilin, N.L., Issledovanie izmeneniy strukturno-fazovogo sostoyaniya splava VZh175 v protsesse goryachey deformatsii i termicheskoy obrabotki [Study of changes in the structural-phase state of the VZh175 alloy during hot deformation and heat treatment], Aviatsionnye materialy i tekhnologii, 2014, No 3, pp. 10-13. DOI: 10.18577/2071-9140-2014-0-310-13.
7. Ion, S.E., Humphreys, F.J., White, S.H., Dynamic recrystallisation and the development of microstructure during the high temperature deformation of magnesium, Acta Metall, 1982, V. 30, No 10, pp. 1909-1919. DOI: 10.1016/0001-6160(82)90031-1.
8. Al-Samman, T., Gottstein, G., Dynamic recrystallization during high temperature deformation of magnesium, Materials Science and Engineering: Л., 2008, V. 490, No 1-2, pp. 411-420. DOI: 10.1016/j.msea.2008.02.004.
9. Shao, Y., Tang, T., Tang, W., Li, D., Modeling of extrusion texture of AZ31 magnesium alloy with consideration of dynamic recrystallization modeling, Procedia Engineering, 2014, V. 81, pp. 592597. DOI: 10.1016/j.proeng.2014.10.045.
10. Meza-García, E., Bohlenb, J., Yib, S., et al., Influence of alloying elements and extrusion process parameter on the recrystallization process of Mg-Zn alloys, Materials Today: Proceedings 2S., 2015, pp. S19-S25. DOI: 10.1016/j.matpr.2015.05.004.
11. Volkova, E.F., Akinina, M.V., Mostyaev, I.V., Puti povysheniya osnovnykh mekhanicheskikh kharakteristik magnievykh deformiruemykh splavov [Ways to improve the main mechanical characteristics of magnesium wrought alloys], Trudy VIAM, 2017, No 10, Art. 02. URL: http://www.viam-works.ru (reference date 01.03.2022). DOI: 10.18577/2307-6046-2017-0-10-2-2.
12. Blokhin, N.N., Ovechkin, B.I., Struktura i diagrammy strukturnykh sostoyaniy deformiruemykh magnievykh splavov [Structure and diagrams of structural states of deformable magnesium alloys], Tsvetnye metally, 1992, No 11, pp. 56-59.
13. Razuvaev, E.I., Lebedev, D.Yu., Bubnov, M.V., Formirovanie ultramelkozernistoy i nanorazmernoy struktury v metallakh i splavakh metodami deformatsii [Formation of ultrafine-grained and nanosized structure in metals and alloys by deformation methods], Aviatsionnye materialy i tekhnologii, 2010, No 3, pp. 3-8.
14. McQueen, H.J., Ryan, N.D., Constitutive analysis in hot working, Materials Science and Engineering A322, 2002, pp. 43-63. DOI: 10.1016/S0921-5093(01)01117-0.
15. McQueen, H.J., Leo, P., Cerri, E., Constitutive Equations for Mg Alloy Hot Work Modeling, Materials Science Forum, 2009, V. 604-605, pp. 53-65. DOI: 10.4028/www.scientific.net/MSF.604-605.53.
Review
For citations:
Kochubey A.Ya., Zhuravleva P.L. Behavior of localized strain under hot compression of cast specimen from Mg–Al–Zn alloy. Voprosy Materialovedeniya. 2022;(3(111)):5-16. (In Russ.) https://doi.org/10.22349/1994-6716-2022-111-3-5-16