Preview

Voprosy Materialovedeniya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Investigation of the surfaced metal of the Fe–Cr–Ni–Mn–Mo–Ti–Nb–C system for operation under high-temperature gas-abrasive wear

https://doi.org/10.22349/1994-6716-2022-111-3-17-28

Abstract

Compositions of flux-cored wires for electric arc surfacing of alloys of the Fe-Cr-Ni-Mn-Mo-Ti-Nb-C alloy system, resistant to high-temperature gas-abrasive wear, were developed. The deposited alloys were studied by optical and electron microscopy, X-ray mi-crospectral and X-ray diffraction analysis. The influence of the carbon content in the alloy on its structural-phase composition, hardness, and wear resistance at normal and elevated temperatures up to 600°C was revealed. It was established that increasing the carbon content in the alloy from 1.2 to 2.8 wt. % leads to increasing the volume fraction of (Cr, Fe)xCy carbides involved in the formation of the eutectic austenite-carbide matrix of the alloy at 6 times. Their morphology also changes from (Fe, Cr)23C6 to (Fe, Cr)7C3. In this case, the content of (Ti, Nb, Mo)xCy and MoxC carbides in the alloy changes insignificantly, and their average size increases by 10%. It has been established that the formation of a composite structure in the alloy contributes to its high resistance to gas-abrasive wear at a temperature of 600°C. The wear resistance of the developed alloy is comparable to a foreign industrial analogue at a much lower cost.

About the Authors

D. V. Priyatkin
Volgograd State Technical University
Russian Federation

28 Lenin Avenue, 400005 Volgograd.



A. A. Artemyev
Volgograd State Technical University
Russian Federation

Cand Sc. (Eng).

28 Lenin Avenue, 400005 Volgograd.



V. I. Lysak
Volgograd State Technical University
Russian Federation

Acad. RAS.

28 Lenin Avenue, 400005 Volgograd.



References

1. Vasudev, H., Thakur, L., Singh, H., Bansal, A., Effect of addition of Al2O3 on the high-temperature solid particle erosion behaviour of HVOF sprayed Inconel-718 coatings, Materials Today Communications, 2022, V. 30, No 103017. DOI: 10.1016/j.mtcomm.2021.103017.

2. Wu, W., Wei, B., Li G., Chen, L., Wang, J., Ma, J., Study on ammonia gas high temperature corrosion coupled erosion wear characteristics of circulating fluidized bed boiler, Engineering Failure Analysis, 2022, V. 132, No 105896. DOI: 10.1016/j.engfailanal.2021.105896.

3. Jindal, C., Sidhu, B. S., Kumar, P., Sidhu, H.S., Performance of hardfaced / heat treated materials under solid particle erosion: A systematic literature review, Materials Today: Proceedings, 2022, V. 50, Part 5, pp. 629-639. DOI: 10.1016/j.matpr.2021.03.441.

4. Hidalgo, V.H., Varela, F.J. B., Rico, E.F., Erosion wear and mechanical properties of plasma-sprayed nickel- and iron-based coatings subjected to service conditions in boilers, Tribology international, 1997, V. 30, Is. 9, pp. 641-649. DOI: 10.1016/S0301-679X(97)00029-7.

5. Manish, R., Elevated temperature erosive wear of metallic materials, Journal of Physics D: Applied Physics, 2006, V. 39, pp. 101-124. DOI: 10.1088/0022-3727/39/6/R01.

6. Vinogradov, V.N., Platonova, S.N., Livshits, L.S., Levin, S.M., Nekotorye voprosy mekhanizma razrusheniya stalei v usloviyakh gazoabrazivnogo iznashivaniya [Some questions of the mechanism of destruction of steels under conditions of gas-abrasive wear], Friction and wear, 1980, V. 1, No 4, pp. 656-661.

7. Sheinman, E., Eroziya materialov. Obzor amerikanskoj pechati [Erosion of materials. Review of the american press], Friction and wear, 1980, V. 27, No 6, pp. 665-675.

8. Kleis, I., Kulu, P., Solid particle erosion: occurrence, prediction and control, London: Springer, 2008. DOI: 10.1007/978-1-84800-029-2.

9. Veinthal, R., Kulu, P., Kaerdi, H., Microstructural aspects of abrasive wear of composite powder materials and coatings, International Journal of Materials and Product Technology, 2011, V. 40, No 12, pp. 92-119. DOI: 10.1504/IJMPT.2011.037208.

10. Javaheri, V., Porter, D., Kuokkala, V. T., Slurry erosion of steel-Review of tests, mechanisms and materials, Wear, 2018, Vol. 408-409, pp. 248-273. DOI: 10.1016/j.wear.2018.05.010.

11. Evans, A., Eroziya [Erosion], Moscow: Mir, 1982.

12. Varga, M., High temperature abrasive wear of metallic materials, Wear, 2017, V. 376-377, Part A, pp. 443-451. DOI: 10.1016/j.wear.2016.12.042.

13. Sokolov, G.N., Lysak, V.I., Naplavka iznosostojkih splavov na pressovye shtampy i instrument dlya goryachego deformirovaniya stalej [Surfacing of wear-resistant alloys on press dies and tools for hot deformation of steels], Volgograd: VolgGTU, 2005.

14. Priyatkin, D.V., Artemiev, A.A., Lysak, V.I., Loiko, P.V., Analiz naplavochnyh splavov dlya raboty v usloviyah gazoabrazivnogo iznashivaniya pri povyshennyh temperaturah [Analysis of hardfacing alloys for work in conditions of gas-abrasive wear at elevated temperatures], Izvestiya Volgogradskogo gosudarstvennogo tekhnicheskogo universiteta, 2020, No 10, pp. 49-55.

15. Danilchenko, B.V., Vybor iznosostoikogo naplavlennogo metalla dlya raboty v usloviyakh abrazivnogo iznashivaniya [Selection of wear-resistant weld metal for abrasive wear conditions], Svarochnoe proizvodstvo, 1992, No 5, pp. 31-33.

16. Sokolov, G.N., Artemyev, A.A., Zorin, I.V., Lysak V.I., Litvinenko-Arkov V.B., Diagnostika iznosostoikosti naplavlennogo metalla metodom sklerometrii [Diagnosis of wear resistance of deposited metal by sclerometry], Svarka i diagnostika, 2012, No 2. pp. 34-39.

17. Artemyev, A.A., Sokolov, G.N., Zorin, I.V., Lysak, V.I., Rykov, M.A., Krutenko, A.V., Shnipko, M.V., Metodika ispytanij naplavlennogo metalla na gazoabrazivnoe iznashivanie [Test procedure for deposited metal for gas-abrasive wear], Izvestiya Volgogradskogo gosudarstvennogo tekhnicheskogo universiteta, 2018, No. 3, pp. 112-116.

18. Lin, C.M., Chang, C.M., Chen, J.H., Hsieh, C.C., Wu, W., Microstructure and wear characteristics of high-carbon Cr-based alloy claddings formed by gas tungsten arc welding (GTAW), Surface and Coatings Technology, 2010, V. 205., No 7., pp. 2590-2596. DOI: 10.1016/j.surfcoat.2010.10.004.

19. Sun, S., Fu, H., Ping, X., Guo, X., Lin, J., Lei, Y., Zhou, J., Formation mechanism and mechanical properties of titanium-doped NbC reinforced Ni-based composite coatings, Applied Surface Science, 2019, V. 476., pp. 914-927. DOI: 10.1016/j.apsusc.2019.01.171.

20. Vorobiov, Y.P., Karbidy v stalyah [Carbides in steels], Izvestiya Chelyabinskogo nauchnogo centra, 2004, No 4, pp. 34-60.

21. Zhao, C., Xing, X., Guo, J., Shi, Z., Zhou, Y., Ren, X., Yang, Q., Microstructure and wear resistance of (Nb, Ti) C carbide reinforced Fe matrix coating with different Ti contents and interfacial properties of (Nb, Ti) C/a-Fe, Applied Surface Science, 2019, V. 494, pp. 600-609. DOI: 10.1016/j.ap-susc.2019.07.209.

22. Meskin, V.S., Osnovy legirovaniya stali [Basics of steel alloying], Moscow: Metallurgizdat, 1959.

23. Fizicheskoe metallovedenie: Fazovye prevrashcheniya v metallah i splavah i splavy s osobymi fizicheskimi svojstvami [Physical metal science: Phase transformations in metals and alloys and alloys with special physical properties], Moscow: Metallurguya, 1987, V. 2.

24. Wang, X.H., Han, F., Liu, X.M., Qu, S.Y., Zou, Z.D., Effect of molybdenum on the microstructure and wear resistance of Fe-based hardfacing coatings, Materials Science and Engineering: A., 2008, V. 489, No. 1-2, pp. 193-200. DOI: 10.1016/j.msea.2007.12.020.

25. Ivanko, A.A., Tverdost [Hardness], Kiev: Naukova dumka, 1968.


Review

For citations:


Priyatkin D.V., Artemyev A.A., Lysak V.I. Investigation of the surfaced metal of the Fe–Cr–Ni–Mn–Mo–Ti–Nb–C system for operation under high-temperature gas-abrasive wear. Voprosy Materialovedeniya. 2022;(3(111)):17-28. (In Russ.) https://doi.org/10.22349/1994-6716-2022-111-3-17-28

Views: 186


ISSN 1994-6716 (Print)