Preview

Voprosy Materialovedeniya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Aramid organoplastics with increased resistance to climatic factors

https://doi.org/10.22349/1994-6716-2022-111-3-67-78

Abstract

The article describes the stage-by-stage development of Russian aramid fibers. The differences between the third generation of Rusar NT fibers and CBM and Ruslan fibers are described. In this work, we studied the resistance of a structural organoplastic based on the third generation of Russian aramid fibers to various climatic factors in order to justify the possibility of using the material in all climatic conditions. For structural organoplastics reinforced with aramid fibers capable of absorbing moisture, the humidity of the environment is a particularly significant factor of influence. When developing all-climatic organoplastics, the key issue is to increase the resistance to moisture absorption and ensure the stability of mechanical characteristics during water and moisture absorption. For the first time for a Russian aramid organoplastic, it has been shown that due to high moisture resistance and a high level of preservation of physical and mechanical properties after exposure to a wide range of climatic tests, organoplastic grade VKO-25 can be considered for use in aviation products operating in all climatic conditions.

About the Authors

G. F. Zhelezina
All-Russian Scientific Research Institute of Aviation Materials (VIAM) — National Research Center “Kurchatov Institute”
Russian Federation

Cand Sc. (Eng).

17 Radio St, 105005 Moscow.



G. S. Kulagina
All-Russian Scientific Research Institute of Aviation Materials (VIAM) — National Research Center “Kurchatov Institute”
Russian Federation

Cand Sc. (Eng).

17 Radio St, 105005 Moscow.



A. S. Kolobkov
All-Russian Scientific Research Institute of Aviation Materials (VIAM) — National Research Center “Kurchatov Institute”
Russian Federation

Cand Sc. (Eng).

17 Radio St, 105005 Moscow.



P. M. Shuldeshova
All-Russian Scientific Research Institute of Aviation Materials (VIAM) — National Research Center “Kurchatov Institute”
Russian Federation

17 Radio St, 105005 Moscow.



References

1. Kablov, E.N., Laptev, A.B., Prokopenko, A.N., Gulyaev, A.I., Relaksatsiya polimernykh kompozitsionnykh materialov pod dlitelnom deistviem staticheskoy nagruzki i klimata. Ch. 1: Svyazuyushchie [Relaxation of polymeric composite materials under long-term action of static load and climate (review). Part 1: Binders]: review, Aviatsionnye materialy i tekhnologii, 2021, No 4, Art. 08. URL: http://www.journal.viam.ru (reference date 11/05/2022). DOI: 10.18577/2713-0193-2021-0-4-70-80.

2. Kablov, E.N., Startsev, O.V., Fundamentalnye i prikladnye issledovaniya korrozii i stareniya materialov v klimaticheskikh usloviyakh [Fundamental and applied research of corrosion and aging of materials in climatic conditions]: review, Aviatsionnye materialy i tekhnologii, 2015, No 4(37), pp. 38-52. DOI: 10.18577/2071-9140-2015-0-4-38-52.

3. Tkachenko, V.N., Gunyaev, G.M., Klimaticheskaya stoykost ugleplastikov pod nagruzkoy [Climatic resistance of carbon plastics under load], Aviatsionnyye materialy. Korroziya i stareniye materialov v morskikh subtropikakh, Perov, B.V., Zasypkin, V.A., (Eds.), Moscow: VIAM, 1983, pp. 18-31.

4. Kablov, E.N., Startsev, O.V., Krotov, A.S., Kirillov, V.N., Klimaticheskoe starenie kompozitsionnykh materialov aviatsionnogo naznacheniya. I. Mekhanizmy stareniya [Climatic aging of aviation composite materials. I. Mechanisms of aging], Deformatsiya i razrushenie materialov, 2010, No 11, pp. 19-27.

5. Kablov, E.N., Startsev, O.V., Krotov, A.S., Kirillov, V.N., Klimaticheskoe starenie kompozitsionnykh materialov aviatsionnogo naznacheniya. III. Znachimye faktory stareniya [Climatic aging of aviation composite materials. III. Significant factors of aging], Deformatsiya i razrusheniye materialov, 2011, No 1, pp. 34-40.

6. Kablov, E.N., Startsev, V.O., Sistemny analiz vliyaniya klimata na mekhanicheskie svoistva polimernykh kompozitsionnykh materialov po dannym otechestvennykh i zarubezhnykh istochnikov [System Analysis of the Climate Effect on the Mechanical Properties of Polymer Composite Materials Based on the Data of Domestic and Foreign Sources], Aviatsionnye materialy i tekhnologii, 2018, No 2, pp. 47-58. DOI: 10.18577/2071-9140-2018-0-2-47-58.

7. Panferov, K.V., Romanenkov, I.G., Abashidze, G.S., Atmosferostoykost stekloplastikov, nakhodyashchikhsya pod nagruzkoy [Weather resistance of glass-reinforced plastics under load], Plasticheskie massy, 1968, No 6, pp. 32-33.

8. Krivonos, V.V., Tarasov, Y.M., Innovatsionnye kompozitnye materialy i tekhnologii v avi-astroenii [Innovative composite materials and technologies in the aircraft industry], Kompozity SNG: Tsifrovizatsiya i stoimostnyy analiz zhiznennogo tsikla izdeliy, Moscow, 2018, pp. 23-26.

9. Kablov, E.N., Startsev, V.O., Inozemtsev, A.A., Vlagonasyshchenie konstruktivno-podobnykh elementov iz polimernykh kompozitsionnykh materialov v otkrytykh klimaticheskikh usloviyakh s nalozheniem termotsiklov [Moisture saturation of structurally similar elements made of polymer composite materials in open climatic conditions with the imposition of thermal cycles], Aviatsionnye materialy i tekhnologii, 2017, No 2, pp. 56-68. DOI 10.18577-2071-9140-2017-0-2-56-68.

10. Startsev, V.O., Valevin, E.O., Gulyayev, A.I., Vliyanie stareniya poverkhnosti polimernykh kompozitsionnykh materialov na ikh mekhanicheskie svoystva [Influence of surface aging of polymer composite materials on their mechanical properties], Trudy VIAM, 2020. No 8, Art. 07. URL: http://www.viam-works.ru (reference date 12/05/2022). DOI: 10.18577/2307-6046-2020-0-8-64-76.

11. Zhelezina, G.F., Solovieva, N.A, Kulagina, G.S., Shuldeshova, P.M., Sov-remennye prepregi na osnove polimernykh organicheskikh volokon dlya izgotovleniya aviatsionnykh konstruktsiy [Modern prepregs based on polymeric organic fibers for the manufacture of aircraft structures], Vse materialy. Entsiklopedicheskiy spravochnik, 2022, No 5, pp. 37-45

12. Mikhaylin, Yu.A., Konstruktsionnye polimernye kompozitsionnye materialy [Structural polymer composite materials], Moscow: NOT, 2018.

13. Zhelezina, G.F., Shuldeshova, P.M., Structural organoplastics based on film adhesives, Polymer Science. Series D, 2014, V. 7, No 3, pp. 172-176. DOI: 10.1134/S199542121403023X.

14. Zhelezina, G.F., Tikhonov, I.V., Chernykh, T.E., Bova, V.G., Voynov, S.I., Aramidnye volokna tretiego pokoleniya Rusar NT dlya armirovaniya organotekstolitov aviatsionnogo naznacheniya [Aramid fibers of the third generation Rusar NT for reinforcement of organotextolites for aviation purposes], Plasticheskie massy, 2019, No 3-4, pp. 43-47.

15. Kablov, E.N., Kulagina, G.S., Zhelezina, G.F., Lonsky, S.L., Kurshev, E.V., Issledovanie mikrostruktury odnonapravlennogo organoplastika na osnove aramidnykh volokon Rusar-NT i epoksidno-polisulfonovogo svyazuyushchego [Investigation of the microstructure of a unidirectional organo-plastic based on Rusar-NT aramid fibers and an epoxy-polysulfone binder] Aviatsionnye materialy i tekhnologii, 2020, No 4, pp. 19-26. DOI: 10.18577/2071-9140-2020-0-4-19-26.

16. Tikhonov, I.V., Tokarev, A.V., Shorin, S.V., Shchetinin, V.M., Chernykh, T.E., Bova, V.G., Russian aramid fibres: past-present-future, Fibre Chemistry, 2013, No 5, pp. 1-8.

17. Mukhametov, R.R., Akhmadiyeva, K.R., Kim, M.A., Babin, A.N., Rasplavnye svyazuyushchie dlya perspektivnykh metodov izgotovleniya PKM novogo pokoleniya [Melt binders for promising methods for the manufacture of PCM of a new generation], Aviatsionnye materialy i tekhnologii, 2012, No S. pp. 260-265.

18. Mukhametov, R.R., Petrova, A.P., Svoistva epoksidnykh polimernykh svyazuyushchikh i ikh pererabotka v polimernye kompozitsionnye materialy [Properties of epoxy polymer binders and their processing into polymer composite materials], Novosti materialovedeniya. Nauka i tekhnika, 2018, No 3-4 (30), p. 6.

19. Mukhametov, R.R., Petrova, A.P., Akhmadiyeva, K.R., Vliyanie voloknistogo napolnitelya na protsess otverzhdeniya i strukturu otverzhdennogo svyazuyushchego v sostave PKM [The effect of fibrous filler on the curing process and the structure of the cured binder in PCM], Vse materialy. Entsiklopedicheskiy spravochnik, 2019, No 5, pp. 12-18.

20. Shuldeshova, P.M., Zhelezina, G.F., Solovieva, N.A., Shuldeshov, E.M., Dielectric characteristics of structural organoplastics, Polimer Science, Series D, 2022, V. 15. No 1, pp. 96-100. DOI: 10.1134/S1995421222010178.

21. Kolobkov, A.S., Polimernye kompozitsionnye materialy dlya razlichnykh konstruktsiy aviatsionnoy tekhniki [Polymer composite materials for various aircraft designs]: review, Trudy VIAM, 2020, No 6-7. Art. 05. URL: http://www.viam-works.ru (reference date 20/05/2022). DOI: 10.18577/2307-60462020-0-67-38-44.

22. Boytsov, B.V., Korotkov, S.S., Krivonos, V.V., Tarasov, Y.M., Nekotorye voprosy tekhnologicheskogo proektirovaniya konstruktsiy iz polimernykh kompozitsionnykh materialov, rabotayushchikh v ekstremalnykh usloviyakh [Some issues of technological design of structures made of polymer composite materials operating in extreme conditions], Moscow: Akademiya problem kachestva, 2019.


Review

For citations:


Zhelezina G.F., Kulagina G.S., Kolobkov A.S., Shuldeshova P.M. Aramid organoplastics with increased resistance to climatic factors. Voprosy Materialovedeniya. 2022;(3(111)):67-78. (In Russ.) https://doi.org/10.22349/1994-6716-2022-111-3-67-78

Views: 385


ISSN 1994-6716 (Print)