Preview

Voprosy Materialovedeniya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Stability of the Y–Ti–O oxides in reactor materials under neutron irradiation at high temperatures

https://doi.org/10.22349/1994-6716-2020-104-4-109-130

Abstract

The paper presents the results of electron microscopic studies of ferrite-martensitic steel samples hardened with Y-O oxides, EP-450 DUO in the initial state and after neutron irradiation in the BN-600 reactor at 1000°C to a damaging dose of 77.5 dpa. These studies showed that the main types of oxide phases were Y2(Si, Ti)2O7 and Y2(Si, Ti)O5. These precipitates at sizes less than 10-20 nm were semi-coherent with a ferritic matrix of steel EP-450 DUO with the ratio (110)malrix//(221)palticle. Some of the Y-Ti-O oxides in the initial state were Y2Ti2O7-type with some deviations from the stoichiometric composition.

However, after neutron irradiation under BN-600 conditions at temperature ~ 1000°C, oxide particles could not be described by the indicated stoichiometry. Besides, after irradiation, silicon and aluminum were found in the oxide's composition. In the case of taking these elements into account during the construction of a triple composition diagram, it was shown that the oxide phases had Y2(Ti, Si, Al)2O7 and Y2(Ti, Si, Al)O5 types. It was established that in samples of EP-450 DUO steel in the initial state with oxide particles up to 20 nm in size, the yttrium content is generally lower than the titanium concentration. The titanium and yttrium concentrations corresponded to the stoichiometric composition Y2Ti2O7 (1:1) with a further increase in the average diameter of these phases. After irradiation, the situation changed somewhat: the yttrium content in most oxide phases exceeds the total concentration of titanium, silicon, and aluminum.

The paper also presents the analysis of porosity and evolution of grain structure in EP-450 DUO steel after neutron irradiation.

About the Authors

A. S. Frolov
National Research Center “Kurchatov Institute”
Russian Federation

Cand Sc. (Eng).

1 Akademika Kurchatova Square, 123182 Moscow.



E. A. Kuleshova
National Research Center “Kurchatov Institute”; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Dr Sc (Eng).

1 Akademika Kurchatova Square, 123182 Moscow; 31 Kashirskoe shosse, 115409 Moscow.



B. A. Gurovich
National Research Center “Kurchatov Institute”
Russian Federation

Dr Sc (Eng).

1 Akademika Kurchatova Square, 123182 Moscow.



A. A. Nikitina
A.A. Bochvar High Technology Scientific Research Institute for Inorganic Materials (VNIINM)
Russian Federation

5а Rogova St, 123098 Moscow.



D. A. Maltsev
National Research Center “Kurchatov Institute”
Russian Federation

Cand Sc. (Eng).

1 Akademika Kurchatova Square, 123182 Moscow.



S. V. Fedotova
National Research Center “Kurchatov Institute”
Russian Federation

Cand Sc. (Eng).

1 Akademika Kurchatova Square, 123182 Moscow.



D. V. Safonov
National Research Center “Kurchatov Institute”
Russian Federation

Cand Sc. (Eng).

1 Akademika Kurchatova Square, 123182 Moscow.



References

1. Wharry, J.P., Swenson, M.J., Yano, K.H., A review of the irradiation evolution of dispersed oxide nanoparticles in the b.c.c. Fe-Cr system: Current understanding and future directions, J. Nucl. Mater., 2017, V. 486, pp. 11-20.

2. Allen, T.R., Gan, J., Cole, J.I., Miller, M.K., Busby, J.T., Shutthanandan, S., Thevuthasan, S., Radiation response of a 9 chromium oxide dispersion strengthened steel to heavy ion irradiation, J. Nucl. Mater., 2008, V. 375, No 1, pp. 26-37.

3. Chen, T., Gigax, J.G., Price, L., Chen, D., Ukai, S., Aydogan, E., Maloy, S.A., Garner, F.A., Shao, L., Temperature dependent dispersoid stability in ion-irradiated ferritic-martensitic dualphase oxide-dispersion-strengthened alloy: Coherent interfaces vs. incoherent interfaces, Acta Mater., 2016, V. 116, pp. 29-42.

4. Auger, M.A., Hoelzer, D.T., Field, K.G., Moody, M.P., Nanoscale analysis of ion irradiated ODS 14YWT ferritic alloy, J. Nucl. Mater., 2020, V. 528.

5. Lescoat, M.-L., Ribis, J., Chen, Y., Marquis, E.A., Bordas, E., Trocellier, P., Serruys, Y., Gentils, A., Kaitasov, O., de Carlan, Y., Legris, A., Radiation-induced Ostwald ripening in oxide dispersion strengthened ferritic steels irradiated at high ion dose, Acta Mater., 2014, V. 78, pp. 328-340.

6. Ribis, J., Bordas, E., Trocellier, P., Serruys, Y., de Carlan, Y., Legris, A., Comparison of the neutron and ion irradiation response of nanooxides in oxide dispersion strengthened materials, J. Mater. Res., 2015 V. 30, No 14, pp. 2210-2221.

7. Certain, A., Kuchibhatla, S., Shutthanandan, V., Hoelzer, D.T., Allen, T.R., Radiation stability of nanoclusters in nano-structured oxide dispersion strengthened (ODS) steels, J. Nucl. Mater., 2013, V. 434, No 1-3, pp. 311-321.

8. Ukai, S., Ohtsuka, S., Kaito, T., et al., Oxide dispersion-strengthened/ferrite-martensite steels as core materials for Generation IV nuclear reactors, Struct. Mater. Gener. IV Nucl. React., Elsevier, 2017, pp. 357-414.

9. Klueh, R.L., Shingledecker, J.P., Swindeman, R.W., Hoelzer, D.T., Oxide dispersion-strengthened steels: A comparison of some commercial and experimental alloys, J. Nucl. Mater., 2005, V. 341, No 2-3, pp. 103-114.

10. International Atomic Energy Agency: Structural Materials for Liquid Metal Cooled Fast Reactor Fuel Assemblies - Operational Behaviour STI/PUB/1548, IAEA Nucl. Energy Ser., Vienna, 2012.

11. Nikitina, A.A., Ageev, V.S., Chukanov, A.P., Tsvelev, V.V., Porezanov, N.P., Kruglov, O.A. R&D of ferritic-martensitic steel EP450 ODS for fuel pin claddings of prospective fast reactors, J. Nucl. Mater., 2012, V. 428, No 1-3, pp. 117-124.

12. Nikitina, A.A., Ageev, V.S., Leontyeva-Smirnova, M.V., Mitrofanova, N.M., Naumenko, I.A., Tselishchev, A.V., Chernov, V.M., Razvitie rabot po konstruktsionnym materialam aktivnykh zon bystrykh reaktorov [Development of works on the structural materials of active zones fast reactors], Atomnaya Energiya, 2015, V. 119, No 5, pp. 243-249.

13. Gurovich, B.A., Frolov, A.S., Kuleshova, E.A., Maltsev, D.A., Safonov, D.V., Fedotova, S.V., Kochkin, V.N., Panferov, P.P., Structural evolution features of the 42XNM alloy during neutron irradiation under VVER conditions, J. Nucl. Mater., 2021, V. 543, p. 152557.

14. Miller, M.K., Forbes, R.G., Atom-Probe Tomography, Boston, MA: Springer US, 2014.

15. Marquis, E.A., Hyde, J.M., Applications of atom-probe tomography to the characterisation of solute behaviours, Mater. Sci. Eng. R Reports, 2010, V. 69, No 4-5, pp. 37-62.

16. Menut, D., Bechade, J.-L., Cammelli, S., Schlutig, S., Sitaud, B., Solari, P.L., Synchrotron radiation investigations of microstructural evolutions of ODS steels and Zr-based alloys irradiated in nuclear reactors, J. Mater. Res., 2015, V. 30, No 9, pp. 1392-1402.

17. Ribis, J., Structural and chemical matrix evolution following neutron irradiation in a MA957 oxide dispersion strengthened material, J. Nucl. Mater., 2013, V. 434, No 1-3, pp. 178-188.

18. Rogozhkin, S. V., Aleev, A. A., Zaluzhny, A. G., Nikitin, A. A., Iskandarov, N. A., Vladimirov, P., Lindau, R., Moslang, A., Atom probe characterization of nano-scaled features in irradiated ODS Eurofer steel, J. Nucl. Mater., 2011, V. 409, No 2, pp. 94-99.

19. Lescoat, M.-L., Ribis, J., Gentils, A., Kaitasov, O., de Carlan, Y., Legris, A., In situ TEM study of the stability of nano-oxides in ODS steels under ion-irradiation, J. Nucl. Mater., 2012 V. 428, No 1-3, pp. 176-182.

20. Swenson, M.J., Wharry, J.P., The comparison of microstructure and nanocluster evolution in proton and neutron irradiated Fe-9%Cr ODS steel to 3 dpa at 500°C, J. Nucl. Mater., 2015, V. 467, pp. 97-112.

21. Swenson, M.J., Dolph C.K., Wharry J.P. The effects of oxide evolution on mechanical properties in proton- and neutron-irradiated Fe-9%Cr ODS steel, J. Nucl. Mater., 2016, V. 479, pp. 426-435.

22. Monnet, I., Dubuisson, P., Serruys, Y., Ruault, M.O., Kaitasov, O., Jouffrey, B., Microstructural investigation of the stability under irradiation of oxide dispersion strengthened ferritic steels, J. Nucl. Mater., 2004, V. 335, No 3, pp. 311-321.

23. Akasaka, N., Yamashita, S., Yoshitake, T., Ukai, S., Kimura, A., Microstructural changes of neutron irradiated ODS ferritic and martensitic steels, J. Nucl. Mater., 2004, V. 329-333, pp. 1053-1056.

24. Miller, M.K., Hoelzer, D.T., Effect of neutron irradiation on nanoclusters in MA957 ferritic alloys, J. Nucl. Mater., 2011, V. 418, No 1-3, pp. 307-310.

25. Kuksenko, V., Pareige, C., Genevois, C., Cuvilly, F., Roussel, M., Pareige, P., Effect of neutron-irradiation on the microstructure of a Fe-12at.%Cr alloy, J. Nucl. Mater., 2011, V. 415, No 1, pp. 61-66.

26. Bachhav, M., Robert Odette, G., Marquis, E.A. а' precipitation in neutron-irradiated Fe-Cr alloys, Scr. Mater., 2014, V. 74, pp. 48-51.

27. Bachhav, M., Robert Odette, G., Marquis, E.A., Microstructural changes in a neutron-irradiated Fe-15 at.%Cr alloy, J. Nucl. Mater., 2014, V. 454, No 1-3, pp. 381-386.

28. Rogozhkin, S.V., Iskandarov, N.A., Aleev, A.A., Zaluzhny, A.G., Kuibida, R.P., Kulevoi, T.V., Chalykh, B.B., Leontieva-Smirnova, M.V., Mozhanov, E.M., Investigation of the influence of irradiation with Fe ions on the nanostructure of ferritic martensitic steel EK-181, Inorg. Mater.: Appl. Res. - 2013, V. 4, No 5, pp. 426-430.

29. Styman, P.D., Hyde, J.M., Wilford, K., Parfitt, D., Riddle, N., Smith, G.D.W., Characterisation of interfacial segregation to Cu-enriched precipitates in two thermally aged reactor pressure vessel steel welds, Ultramicroscopy, 2015, V. 159, pp. 292-298.


Review

For citations:


Frolov A.S., Kuleshova E.A., Gurovich B.A., Nikitina A.A., Maltsev D.A., Fedotova S.V., Safonov D.V. Stability of the Y–Ti–O oxides in reactor materials under neutron irradiation at high temperatures. Voprosy Materialovedeniya. 2022;(3(111)):109-130. (In Russ.) https://doi.org/10.22349/1994-6716-2020-104-4-109-130

Views: 235


ISSN 1994-6716 (Print)