

Corrosion resistance of 12% chrome steel under the operation conditions of a steam generator of a reactor plant with sodium coolant
https://doi.org/10.22349/1994-6716-2020-104-4-131-147
Abstract
The influence of an aqueous medium and superheated steam on the corrosion resistance and resistance to corrosion-mechanical destruction of 07Kh12NMFB steel in various operating modes of a steam generator of a promising high-power sodium-cooled reactor plant has been studied. Steel of this grade meets the requirements for the operation of heat exchange pipes and vessel elements of direct-flow steam generators of a reactor plant in terms of corrosion resistance and corrosion-mechanical strength.
About the Authors
A. S. KudryavtsevRussian Federation
Cand. Sc. (Eng).
49 Shpalernaya St, 191015, St Petersburg.
S. A. Suvorov
Russian Federation
49 Shpalernaya St, 191015, St Petersburg.
D. A. Artemieva
Russian Federation
49 Shpalernaya St, 191015, St Petersburg.
R. M. Ramazanov
Russian Federation
Cand. Sc. (Eng).
49 Shpalernaya St, 191015, St Petersburg.
References
1. Blokhina, A.N., Liakishev, S.N., Solomatina, V.A., Perspektivny korpusnoy parogenerator dlya energobloka na bystrykh neytronakh s natrievym teplonositelem [A promising vessel steam generator for a fast neutron power unit with a sodium coolant], Voprosy atomnoy nauki i tekhniki. Ser. Obespechenie bezopasnosti AES, 2012, No 31, pp. 5-14.
2. Denisov, V.V., Karsonov, V.I., Trunov, N.B., Konstruktsiya, ekspluatatsiya i prodlenie resursa parogeneratorov energobloka BN-600 [Design, operation, and life extension of steam generators of the BN-600 power unit], Atomnaya energiya, 2005, No 6, pp. 481-488.
3. Gorynin, I.V., Karzov, G.P., Markov, V.G., Trapeznikov, Yu.M., Grish-manovskaia, R.N., Ananieva, M.A., Berezhko, B.I., Tereshchenko, A.G., Materialy i tekhnologii, obespechivayushchie rabotosposobnost oborudovaniya AEU s zhidkometallicheskimi teplonositelyami [Materials and technologies that ensure the operability of nuclear power plant equipment with liquid metal coolants], Voprosy Materialovedeniya, 1999, No 3 (20), pp. 85-105.
4. Artemieva, D.A., Karzov, G.P., Kudriavtsev A.S., Markov, V.G., Suvorov, S.A., Brykov, C.I., Denisov, V.V., Vybor konstruktsionnogo materiala dlya parogeneratora po kriteriyam obespecheniya korrozionnoy stoykosti v razlichnykh usloviyakh ekspluatatsii natrievogo reaktora bolshoy moshchnosti [Choice of structural material for a steam generator according to the criteria for ensuring corrosion resistance in various operating conditions of a high-power sodium reactor], Voprosy atomnoy nauki i tekhniki. Ser. Obespecheniye bezopasnosti AES, 2014, Issue 34: Materialy i tekhnologiya izgotovleniya oborudo-vaniya RU, pp. 53-59.
5. Sumitomo Metal Industries Ltd.: Seam Oxidation on Cr-Mo-Steel Tubes, Paper No 805, 1443A, 1989.
6. Kimura, K., Yamaoka, S., Influence of high pressure normalizing heat treatment on microstructure and creep strength of high Cr steels, Materials Science and Engineering A, 2004, V. 387-389, pp. 628632.
7. Kimura, K., Sawada, K., Kushima, H., Toda, Y., Influence of Chemical Composition and Heat Treatment on Long-term Creep Strength of Grade 91 Steel, Procedia Engineering, 2013, V. 55, pp. 2-9.
8. Korrozionnaya stoykost reaktornykh materialov [Corrosion resistance of reactor materials]: reference book, Gerasimova, V.V., (Ed.), Moscow: Atomizdat, 1976.
9. Patent RU 2543583C2: Zharoprochnaya korrozionnostoykaya stal [High-temperature corrosion resistant steel], Applied 17/06/2013, Published 27/12/2014.
10. Garsney, R., Corrosion and requirement for feed and boiler water chemical control in nuclear steam generators, Water chemistry of nuclear reactor systems, London: PNES, 1978.
11. Mamet, V.A., Martynova, O.I., Protsessy khayd-aut (mestnogo kontsentrirovaniya) primesey kotlovoy vody parogeneratorov AES i ikh vliyanie na nadezhnost raboty oborudovaniya [Hide-out processes (local concentration) of impurities in boiler water of NPP steam generators and their influence on the reliability of equipment operation], Teploenergetika, 1993, No 7, pp. 2-7.
12. Karzov, G.P., Suvorov, S.A., Fedorova, V.A., Filipov, A.V., Otsenka dinamiki zarozhdeniya i razvitiya povrezhdeniy teploobmennykh trub parogeneratorov tipa PGV-1000 v rabochikh rezhimakh, [Evaluation of the dynamics of the origin and development of damage to heat exchange tubes of steam generators of the PGV-1000 type in operating modes]: Sbornik trudov sedmogo mezhdunarodnogo seminara po gorizontalnym parogeneratoram, Podolsk, Gidropress, 2006.
13. Karzov, G.P., Suvorov, S.A., Bliumin, A.A., Vasilev, N.V, Popadchuk, V.S., Zhukov, R.Yu., Brykov, S.I., Rol nizkotemperaturnoy korrozii v povrezhdayemosti teploobmennykh trub parogeneratorov tipa PGV. Zarozhdenie pittingov i razvitiye treshchin KR v srede pittingov v stoyanochnykh, predpuskovykh i puskovykh rezhimakh ekspluatatsii [Proceedings of the 10th international conference “Issues of Material Science in the design, manufacture and operation of equipment for nuclear power plants”], St Petersburg: Prometey, 2008.
14. OST 108-901-01-79: Metally. Metody ispytaniy na korrozionnoye rastreskivaniye primenitelno k atomnoy i teplovoy energetike [Metals. Test methods for corrosion cracking in relation to nuclear and thermal power engineering].
15. Malinin, N.N., Prikladnaya teoriya plastichnosti i polzuchesti [Applied theory of plasticity and creep]: study guide for universities, Moscow: Mashinostroenie, 1968.
16. GOST R 59115.4-2021: Obosnovanie prochnosti oborudovaniya i truboprovodov atomnykh energeticheskikh ustanovok. Dlitelnye mekhanicheskie svoistva konstruktsionnykh materialov [Justification of the strength of equipment and pipelines of nuclear power plants. Long-term mechanical properties of structural materials], Moscow: Rossiyskiy institut standartizatsii, 2021.
17. Feodosiev, V.I., Soprotivlenie materialov [Strength of materials]: study guide for universities, Moscow: MGTU im. N. E. Baumana, 1999.
18. Zhang, N., Zhu, Z., Xua, H., Mao, X., Li, J., Oxidation of ferritic and ferritic-martensitic steels in flowing and static supercritical water, Corrosion Science, 2016, V. 103, pp. 124-131.
19. Liu, C., Shen, T., Yao, C., Chang, H., Wei, K., Niu, L., Ma, Z., Wang, Z., Corrosion behavior of ferritic-martensitic steels SIMP and T91 in fast-flowing steam, Corrosion Science, 2021, V. 187.
20. Cabet, C., Dalle, F., Gaganidze, E., Henry, J., Tanigawa, H., Ferritic-martensitic steels for fission and fusion application, Journal of Nuclear Materials, 2019, V. 523, pp. 510-537.
21. Wright, I.G., Dooley, R.B., A review of the oxidation behaviour of structural alloys in steam, International Materials Reviews, 2010, V. 55, No 3, pp. 129-167.
22. Lin, L.F, Cragnolino, G., Szklarska-Smialovska, Z., Macdonald, D.D., Stress Corrosion Cracking of Sensitized Type 304 Stainless Steel in High Temperature Cloride Solutions, Corrosion, 1981, V. 37, No 11, pp. 616-627.
23. Ford, F.P, Povich, M.J., The Effect of Oxygen Temperature Combinations on the Stress Corrosion Susceptibility of Sensitized Type 304 Stainless Steel in High Purity Water, Corrosion, 1979, V. 35, No 12, pp. 569-574.
Review
For citations:
Kudryavtsev A.S., Suvorov S.A., Artemieva D.A., Ramazanov R.M. Corrosion resistance of 12% chrome steel under the operation conditions of a steam generator of a reactor plant with sodium coolant. Voprosy Materialovedeniya. 2022;(3(111)):131-147. (In Russ.) https://doi.org/10.22349/1994-6716-2020-104-4-131-147